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By the end of this topic, you should be able to:
• Describe the differences between inferential and descriptive statistics.
• Describe the various types of data/variables.
• Describe and know when to use the various measures of centrality and dispersion.
• Describe the two ways of estimating population values.
• Describe the steps of hypothesis testing.
• Distinguish between one-tailed and two tailed tests.
• Distinguish type I and II errors.
• Distinguish the mechanics of the paired and unpaired t-test.
• Describe regression and correlation, and their relationship.
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Statistics is 
essential for 

understanding 
what data is 

telling us. It also 
helps:

Formulate 
hypothesis.

Design study to 
objectively test 

hypothesis.

Collect reliable 
and unbiased 

data.

Process and 
evaluate data 

rigorously.

Identify 
meaningful 

trends.

Interpret and 
draw appropriate 

conclusions.
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Descriptive:
• Summarising existing set 

of data
• Examples: Mean, Median, 

Standard Deviation, 
Coefficient of Variation

Inferential:
• Deducing population 

properties from existing 
sample data

• Examples: Hypothesis Testing, 
Central Limit Theorem, 
Confidence Interval

Graphs Numerical 
Summaries

Confidence 
Intervals

Significance 
Tests

Inferential 
Methods

Descriptive 
Methods

Statistical 
Methods
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Descriptive statistical methods are used to make sense of the data.

Raw data have to be processed and summarised before one can make sense of data.

Summary can take the form of:
• Numerical Indices (Arithmetic Mean, Median, Standard Deviation, Coefficient of Variation);
• Tables; and
• Graphs/ Diagrams.
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Inferential statistical methods use a sample to produce statistical inferences about a population.

It is required to take population and variation into account.

The sample may not always be a good reflection of the population.
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Inferential statistics estimates the 
true population parameter based 
on a summary statistics. It goes 
beyond the collected data.

Descriptive statistics describe, 
show and summarise data 

currently being analysed. It 
does not go beyond the data.

For example, looking at the height of a class of 10 students,
• The mean height of the class is 171 cm (descriptive).
• The mean height of all the students in the university is 171 cm (inferential → using a sample data to 

infer about whole population).
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Source: http://www.whatissixsigma.net/basic-statistics/

Types of Data

Quantitative

Discrete

Continuous

Qualitative Qualitative

The data is countable and has only whole 
numbers. For example: Number of defects, 
Number of customer complaints, etc.

The data is continuous. For example: 
Temperature, Length, etc.

The data can only be categorised. For 
example: Male or Female, Yes or No, etc.
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Patient Gender Status

1 Male Alive

2 Female Alive

3 Male Dead

4 Female Alive

etc. etc. etc.

Dead Alive Total

Female 12 25 37

Male 23 26 49

Total 35 51 86

Proportion is a fraction and the 
numerator is a subset of the 
denominator:
• Proportion Dead = 35/86 = 0.41

Odds are fractions where the numerator
is not part of the denominator:
• Odds in Favour of Death = 35/51 = 

0.69
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Patient Gender Status

1 Male Alive

2 Female Alive

3 Male Dead

4 Female Alive

etc. etc. etc.

Dead Alive Total

Female 12 25 37

Male 23 26 49

Total 35 51 86

Ratio is a comparison of two numbers:
• Ratio of Dead:Alive = 35:51

Odds Ratio is commonly used in case-
control studies:
• Odds in Favour of Death for Females = 12/25 

= 0.48; 
• Odds in Favour of Death for Males = 23/26 = 

0.88; 
• Odds Ratio = 0.88/0.48 = 1.84
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Distribution Patterns:
• Symmetrical (bell-

shaped) distribution, 
e.g. normal distribution

• Skewed distribution
• Bimodal and multimodal 

distribution (i.e. 
multiple peaks)

Indices of Central Tendency:
• Mean
• Median
• Quantiles
• Mode

Indices of Dispersion:
• Summarises dispersion 

from a central value, 
such as the arithmetic 
mean

• Variance, standard 
deviation, coefficient of 
variation

Methods of summarising quantitative data:
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Symmetrical Distribution

Skewed Distribution

Bimodal Multimodal

(+) Positively Skewed 
Distribution

(-) Negatively Skewed 
Distribution
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Arithmetic Mean is the average of a set of values. Mean is sensitive to extreme values, for example 
blood pressure reading.

𝑋𝑋 =
𝑛𝑛

x1 87 87

x2 95 95

x3 98 98

x4 101 101

x5 105.0 1050

Mean 97.2 286.2
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Median is the value separating the first half of a ranked sample, or a population, from the second half. 
Median is less sensitive to extreme values.

x1 87 87

x2 95 95

x3 98 98

x4 101 101

x5 105.0 1050

Median is unchanged
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Quantiles are formed by dividing the distribution of ordered values into equal-sized parts. Here are 
some types of quantiles:
• Quartiles: 4 equal parts
• Deciles: 10 equal parts
• Percentiles: 100 equal parts

Q1 Q2 Q3

First 25% Second 25% Third 25% Fourth 25%

Q1: First Quartile
Q2: Second Quartile = Median
Q3: Third Quartile
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Variance is the average of squares of deviation from the mean. Population variance: divide by sample size, n:

Variance of a sample is usually obtained by subtracting 1 from the denominator, n or the degree of freedom.

�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − 𝑋𝑋 2

𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − 𝑋𝑋 2

𝑛𝑛 − 1

Effective sample size, 
also called the 
degree of freedom.

This results in an awkward unit of measurement since the values are squared.
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Standard Deviation (s.d.) is the square root of the variance. It provides solution to the problem of 
squared values of variance. Population standard deviation (σ): divide by sample size, n:

� 𝑥𝑥𝑖𝑖 − 𝜇𝜇 2

𝑛𝑛
σ =

Sample standard deviation (s): divide by (n - 1), or the degrees of freedom

� 𝑥𝑥𝑖𝑖 − 𝑥𝑥 2

𝑛𝑛 − 1
s =
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Standard deviations can be misleading when comparing between samples/ populations with different 
orders of magnitude. 

Weights of Newborn Elephants (kg)

929 853

878 939

895 972

937 841

801 826

Weights of Newborn Mice (kg)

0.72 0.42

0.63 0.31

0.59 0.38

0.79 0.96

1.06 0.89

It is incorrect to say that Elephants show greater variation for birth-weights than Mice because of higher 
standard deviation.

n = 10, x = 887.1, sd = 56.50 n = 10, x = 0.68, sd = 0.255
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Coefficient of Variance (cv) expresses standard deviation relative to its mean.

Weights of Newborn Elephants (kg)

929 853

878 939

895 972

937 841

801 826

Weights of Newborn Mice (kg)

0.72 0.42

0.63 0.31

0.59 0.38

0.79 0.96

1.06 0.89

n = 10, x = 887.1, sd = 56.50, 
cv = 0.0637

n = 10, x = 0.68, sd = 0.255, 
cv = 0.375

Mice show greater birth-weight variation.

𝑐𝑐𝑐𝑐 =
𝑠𝑠

𝑋𝑋
A standardised index of comparison:
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When comparison groups have very different means (cv is suitable as it expresses 
the standard deviation relative to its corresponding mean).

When different units of measurements are involved, e.g. group 1 unit is 
mm, and group 2 unit is mg (cv is suitable for comparison as it is unit free).

In cases such as above, standard deviation should not be used for 
comparison.

When to use cv?
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Statistical Estimation

• Estimating population parameters using 
sample data.

• Utilising the “Confidence Interval” 
approach.

Hypothesis Testing 
• Checking the validity of hypotheses (on the 

population) by calculating the probability of 
the expected outcome occurring in the 
sample, assuming the assumption holds true.

• Utilising the “Test for Statistical Significance” 
approach .
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Two ways to estimate population values from sample values:

• Using the parameter of a single 
sample as an estimate for the 
population parameter. 

• Ignores the sampling error (or 
sample variance).

Point Estimation

• Using a sample parameter to 
estimate a population parameter by 
defining an interval within which 
the population can be found in a 
defined probability. 

• Takes into account the sampling 
error (or sample variance).

Interval Estimation or 
Confidence Interval (CI)

The main difference between the two approaches lie in their treatment of the sampling error.
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Central Limit Theorem suggests:
• With repeated sampling, the mean 

of the distribution of sample means 
is equal to the true population 
mean, µ. 

Central Limit Theorem assumptions:
• Large and constant sample size
• Repeated sampling with replacement
• Samples are randomly taken
• Samples are independent of each other

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥

𝑥𝑥
𝑥𝑥 𝑥𝑥

𝑥𝑥
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In reality, we are usually unable to take sufficient samples to apply the Central Limit 
Theorem. However, the Central Limit Theorem allows us to calculate the Standard 
Error (S.E.) or the standard deviation of the sampling distribution. 

𝑆𝑆.𝐸𝐸. =
𝑆𝑆
√𝑛𝑛
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Through the Confidence Interval, sampling error is taken into account by modifying the 
sample mean with the product of the Standard Error and the Z-value according to the 
level of confidence. Thus, at 95% level of confidence, the CI is defined as:

𝑋𝑋 ± 1.96
𝑆𝑆
√𝑛𝑛

Standard Error

In other words, there is a 95% chance that the population mean, µ, can be found 
within the range. 
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Hypothesis testing revolves around two statements:

• The neutral statement.
• E.g. There is no difference between 

NUS and NTU students.

The Null Hypothesis (H0)

• Essentially the scientific statement 
you want to prove.

• E.g. There is a difference between 
NUS and NTU students.

The Alternative Hypothesis (H1)

Hypothesis Testing tells us whether we can reject the null hypothesis, given the data gathered. 
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1.Obtain a 
sample that is 
representative of 
population.

1.Write down 
the null and 
alternative 
hypotheses.

1.Determine if it 
is a one or two-
tailed test &
select the level of 
significance (α).

1.Choose a test 
statistic based on 
the nature of the 
data collected.
• The test statistic is 

a numerical value 
that summarises 
the sample 
information

• E.g. Z-score, T-
score, sum of 
positive/negative 
ranks (non-
parametric)
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1.Set up decision rule.

1.Compute test 
statistic.

1.Make a Conclusion.

• The decision rule is a 
statement that tells under 
what circumstances to reject 
the null hypothesis. 

• E.g. if test statistic is 
smaller/bigger than level of 
significance, we can reject H0.

• Compare test statistic 
against predetermined 
decision rule

• Two conclusions:
o Reject H0 (because it is very 

unlikely to observe the 
sample data if the null 
hypothesis is true).

o Do not reject H0 (because 
the sample data is still likely 
to be observed if the null 
hypothesis is true).
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Question: A random sample of 100 male live births delivered at NUH gave a sample mean weight of 
3.5kg with an SD of 0.9kg. What is the likelihood that the mean birth weight from the sample population 
is the same as the mean birth weight of all male live births in Singapore?

Null Hypothesis (H0): µpop = σpop

X = 3.5 kg, SD = 0.9 kg,
µpop = 3.0 kg, σpop = 1.8 kg

Test of Significance makes use of the normal distribution properties of the sampling 
distribution of the mean.
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𝑍𝑍 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎
√𝑛𝑛

Z-score can be computed by:

Also known as Standard Normal Deviate (SND). For example:

3.5 − 3.0
⁄1.8 √100

= 2.78
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If H0 is rejected:
• There is less than 5% chance (i.e. very low) that the population of male babies’ 

weights in NUH is equivalent to the population of male babies’ weights in Singapore.
• Any difference in weight between the male babies in NUH and the population of 

male babies in Singapore should not be due to chance alone.
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From the test statistic, we are able to infer its corresponding p-value, 
which is the probability of attaining the observed, or more extreme, 
results if we assume the null hypothesis, H0, to be true. 

Hence, in this example, a Z-value of  2.78 gives the p-value of 0.0054.
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One-tailed Tests:

Used when we can anticipate the direction of 
difference, usually through scientific 
evidence.

E.g. the glucose level in urine of diabetic vs 
non-diabetic patients.

Two-tailed Tests:

Used when we do not know the direction of 
difference (which is usually the case).

Difference occurs in both sides of the 
standard normal distribution.
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However, given the same test statistic, the p-value in One-tailed Tests will 
be half of that in Two-tailed Tests, since the results that are more extreme 
than that observed can only occur in one direction. 

Hence, when using One-tailed Tests, there is a higher chance of rejecting a 
true null hypothesis (Type I Error)!
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There are two types of wrong conclusions:
• Type I error: Wrongly rejecting the null hypothesis .
• Type 2 Error: Not rejecting the null hypothesis when you should reject.

Pr
ed

ic
te

d
Co

nd
iti

on

Difference exists 
(H0 is incorrect)

No difference 
(H0 is correct)

Difference 
exists (reject H0)

Correct action 
(power or 1-)

Type I or error

No difference 
(Accept H0)

Type II or error Correct action

Actual Condition
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• A statistically significant result in 
biological research may not be clinically 
significant.

• E.g. when sample size of drug-testing 
subjects is big, the standard error of 
the mean becomes smaller.

• Easier to reject null hypothesis 
(distribution is narrower).

• Any statistical significance may not 
mean that the drug is effective in 
bringing significant therapeutic effects.

42



• When sample size is large, use Z-test.

• When sample size is small, use T-test.
o Assumption that sampling distribution is 

normally distributed is not true for small 
samples.

o Smaller samples has a symmetrical 
distribution but with a wider spread than 
a normal distribution (larger standard 
error of mean) → t-distribution.

o As sample size increases, spread becomes 
smaller → approaches normal 
distribution at sample size = infinity.
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0.4

0.3

0.2

0.1

0
-3-4 -2 -1 0 1 2 3 4

Normal (t∞)
t25

t1

t5

Varies with sample size; larger sample size = narrower, tails are “lower”.
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• For two independent samples that 
cannot be paired.

• Examples: 
o Observations on two different 

groups of patients (control + 
variable) → data are not collected 
from the same person.

o Comparison of data sampled from 
different areas/ regions.

Battery Workers 
(Occupationally 

Exposed)

Control 
(Not Occupationally 

Exposed)

0.082 0.040

0.080 0.035

0.079 0.036

0.069 0.039

0.085 0.040

0.09 0.046

0.086 0.040

0.08157 0.03943

0.0067047 0.0035523

Blood Pb Concentrations

mean

std dev
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Example question:
• For the two independent groups 

(control and battery workers), what is 
the probability that the difference in 
sample mean blood Pb concentrations 
is due to chance alone?

• Take into consideration the two sample 
variance/ s.d.

𝑿𝑿𝟏𝟏 − 𝑿𝑿𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 = 𝟎𝟎.𝟎𝟎𝟎𝟎

Battery Workers 
(Occupationally 

Exposed)

Control 
(Not Occupationally 

Exposed)

0.082 0.040

0.080 0.035

0.079 0.036

0.069 0.039

0.085 0.040

0.09 0.046

0.086 0.040

0.08157 0.03943

0.0067047 0.0035523

Blood Pb Concentrations

mean

std dev
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T-score for unpaired, independent samples:

with a degree of freedom of (n1 + n2 - 2)

Example question:
• We suspect that the battery workers 

have different mean blood Pb level 
than control group due to exposure 
at work → H1

• H0: No difference in mean blood Pb
level between control and battery 
workers, i.e. μcontrol = μbattery

𝑡𝑡 =
�𝑋𝑋1 − �𝑋𝑋2

𝑆𝑆𝐸𝐸 ( ̅𝑋𝑋1 − ̅𝑋𝑋2)

=
�𝑋𝑋1 − �𝑋𝑋2

� 1
𝑛𝑛1

+ �1
𝑛𝑛2

(𝑛𝑛1 − )1 𝑠𝑠1
2 + (𝑛𝑛2 − )1 𝑠𝑠2

2

𝑛𝑛1 + 𝑛𝑛2 − 2
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• In this example,

• The p-value for this t-score test statistic is < 0.001, therefore reject null hypothesis.
• Conclusion: There is some evidence, based on the data, that battery workers have 

higher mean blood Pb levels than the control group.

𝑡𝑡 =
0.08157 − 0.03943

0.002868
= 14.7 𝑤𝑤𝑖𝑖𝑡𝑡𝑤 12 𝑑𝑑. 𝑓𝑓.

Example question:
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Assumptions:

The two normally 
distributed 

populations have the 
same population 

variance.

The two samples are 
random and 

independent. 
Observations in the two 
groups are unrelated to 

each other (e.g. not 
based off the same 

person). The two samples 
are drawn from 

normally 
distributed 

populations.
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• Used in cases when the two samples 
are paired.

• Examples: 
o Before-and-after observations on 

the same subjects.
o Comparison of two different 

methods of measurement or two 
different treatments where the 
measurements/treatments are 
applied to the same subjects.

Patient Fasting 
Cholesterol

Postprandial 
Cholesterol

1 198 202

2 192 188

3 241 238

4 229 226

5 185 174

6 303 315

Study involves 6 subjects acting as their own control 
(best match).
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Null hypothesis: No difference in mean 
cholesterol levels between fasting and 
postprandial states (μfasting = μpostprandial)

Patient Fasting 
Cholesterol

Postprandial 
Cholesterol

Difference 
(d)

1 198 202 -4

2 192 188 +4

3 241 238 +3

4 229 226 +3

5 185 174 +11

6 303 315 -12

𝑑𝑑 = 0.833
sd = 7.885

n = 6
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Computing the t-score:

df: n-1 (where n is the number of pairs)

Patient Fasting 
Cholesterol

Postprandial 
Cholesterol

Difference 
(d)

1 198 202 -4

2 192 188 +4

3 241 238 +3

4 229 226 +3

5 185 174 +11

6 303 315 -12

𝑑𝑑 = 0.833
sd = 7.885

n = 6

𝑡𝑡 =
�̅�𝑑
𝑆𝑆𝐸𝐸 ̅𝑑𝑑

=
�̅�𝑑
⁄𝑠𝑠𝑑𝑑 √𝑛𝑛

=
0.833
3.219

= 0.259
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• Null hypothesis is not rejected.
• Conclusion: Insufficient evidence from the data to suggest that postprandial cholesterol 

levels are on average, higher than fasting cholesterol levels.

Patient Fasting Cholesterol Postprandial Cholesterol

1 198 202

2 192 188

3 241 238

4 229 226

5 185 174

6 303 315
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Failure to recognise assumptions:

• Population must not be multimodal.
• Population should be symmetrical. 

Failure to distinguish situations that 
require paired or unpaired tests:

• The conclusion will be affected due 
to differences in calculating the test 
statistic and the degrees of freedom
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Parametric tests require assumptions of 
the distribution of the study variables.

In biology, many situations involve variables that 
cannot follow a normal or t-distribution, such as:
• # of hospital admissions per person per year
• # of surgical operations per person

In these instances, non-parametric tests 
are conducted.
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Non-parametric tests can be used for data 
which are:
● Markedly skewed
● Generated from small sample sizes
● Scores (measured on ordinal scale)

Non-parametric tests are also quick and 
easy to apply but compare quite well with 
parametric methods.
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Non-parametric tests:

Not as efficient
compared to 

parametric methods 
(when the assumptions 

are met).

Are not suitable for 
estimation, since it is 
difficult to calculate 

the confidence 
intervals.

Do not have 
equivalent tests

for more 
complicated 

methods.
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Multiple testing 
increases the chance 
of at least one false 

positive.
Let’s say you have a 
truck load of 1000 

apples and a basket of 
10 apples. It is more 

likely that you will find 
at least one rotten 

apple (false positive) in 
the truck than in the 

basket.
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JELLY BEANS 
CAUSE ACNE!

SCIENTISTS 
INVESTIGATE! 

BUT WE’RE 
PLAYING MINE 
CRAFT!  ….FINE

WE FOUND NO 
LINK BETWEEN 
JELLY BEANS AND 
ACNE (P > 0.05).

THAT SETTLES THAT.

I HEAR IT’S ONLY A 
CERTAIN COLOR 
THAT CAUSES IT.

SCIENTISTS !

WE FOUND NO LINK 
BETWEEN PURPLE 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN BROWN 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN PINK 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO 
LINK BETWEEN 
BLUE JELLY BEANS 
AND ACNE (P>0.05).

WE FOUND NO 
LINK BETWEEN 
TEAL JELLY BEANS 
AND ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN SALMON 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN RED JELLY 
BEANS AND ACNE 
(P>0.05).

WE FOUND NO LINK 
BETWEEN TURQUOISE 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN MAGENTA 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN YELLOW 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN GREY 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO 
LINK BETWEEN TAN 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN CYAN JELLY 
BEANS AND ACNE 
(P>0.05).

WE FOUND A LINK 
BETWEEN GREEN 
JELLY BEANS AND 
ACNE (P<0.05).

WE FOUND NO LINK 
BETWEEN MAUVE 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN BEIGE JELLY 
BEANS AND ACNE 
(P>0.05).

WE FOUND NO LINK 
BETWEEN LILAC JELLY 
BEANS AND ACNE 
(P>0.05).

WE FOUND NO LINK 
BETWEEN BLACK 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN PEACH 
JELLY BEANS AND 
ACNE (P>0.05).

WE FOUND NO LINK 
BETWEEN ORANGE 
JELLY BEANS AND 
ACNE (P>0.05).
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• Recall: α (alpha) is the probability of observing a false positive result in a test (e.g. α 
= 0.01)

• Two ways to explain the problem of multiple testing:

Expected number of false positives:

• Number of tests × α
• With 10 tests, E(FP) = 10 × 0.01 = 0.1 

→ less than 1, unlikely
• With 100 tests, E(FP) = 100 × 0.01 = 1

Probability of observing at least one 
false positive:

• 1 - (1 – alpha)number of tests

• For 10 tests, P(at least 1 FP) = 1 – (1 -
0.01)10 = 0.09 (almost 10%)

• For 100 tests, P(at least 1 FP) = 1 – (1 
- 0.01)100 = 0.63 (63%!)
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Multiple testing corrections (MTC) takes into consideration this increasing false positive 
rate when doing multiple tests. MTC methods are:

Bonferroni (FWEB)

Holm

Benjamini-Hochberg
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Only use MTC when you absolutely need the results to be correct (e.g. 
when confirming a suspected relationship).

Difficult to get 
positive results.

In some cases, 
some false 

positives can be 
tolerated.

Popular MTC 
methods tend to be 
too conservative in 

most practical 
situations.

Not suitable for 
exploratory or 

functional analysis of 
data, e.g. when 

testing for any data 
correlation for the 

first time.
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and Regression
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Allows us to 
identify the 
relationship 

between a pair of 
variables.

Often overused and 
abused!
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Covariance is the mean value of the product of the deviations of two variables from their respective 
means, also expressed in equation as:

Numerical value can be both positive or negative!

𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − �𝑋𝑋) (𝑦𝑦𝑖𝑖 − �𝑌𝑌)

𝑛𝑛 − 1
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The numerical value of covariance can be:

However, covariance does not have a defined range, causing it to be difficult to 
evaluate the extent of correlation. Hence, we typically standardise the covariance 
through the Pearson Product Correlation, which introduces fixed boundaries. 

cov(X,Y) > 0 → X & Y are positively correlated

cov(X,Y) < 0 → X & Y are negatively correlated 

cov(X,Y) = 0 → X & Y are not correlated (independent)
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• A standardised form of the covariance such that its values are bound between -1 
and 1.

• No units (therefore universal standard)
• Value nearer to -1: Negative correlation
• Value nearer to +1: Positive correlation
• Value is 0: Variables have no relationship

𝑟𝑟 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 (𝑥𝑥,𝑦𝑦)

𝑐𝑐𝑐𝑐𝑟𝑟 𝑥𝑥 𝑐𝑐𝑐𝑐𝑟𝑟 𝑦𝑦
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Linear Relationships Non-linear Relationships
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For strong relationships, we can predict the value of Y given X with little error.

Strong Relationships Weak Relationships
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�̂�𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 (𝑥𝑥,𝑦𝑦)
𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦

�
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖 − 𝑥𝑥) (𝑦𝑦𝑖𝑖 − 𝑦𝑦)

�̂�𝑟 =
n - 1

�
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2

n - 1

�
𝑖𝑖=1

𝑛𝑛

(𝑦𝑦𝑖𝑖 − 𝑦𝑦)2

n - 1

�̂�𝑟 = 𝑆𝑆𝑆𝑆𝑥𝑥𝑦𝑦
𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆𝑦𝑦
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In many cases, observed correlations are merely coincidental!

ANOTHER HUGE STUDY FOUND 
NO EVIDENCE THAT CELL 
PHONES CAUSE CANCER. WHAT 
WAS THE W.H.O THINKING? 

I THINK THEY 
JUST GOT IT 
BACKWARD.

HUH?

WELL TAKE 
A LOOK.

ANOTHER HUGE STUDY FOUND NO 
EVIDENCE THAT CELL PHONES CAUSE 
CANCER. WHAT WAS TGE W.H.O 
THINKING? 

JUST TO BE SAFE, UNTIL I 
SEE MORE DATA I’M GOING 
TO ASSUME CANCER 
CAUSES CELL PHONES.

UNITED STATES:

TOTAL CANCER 
INCIDENCE 

CELL PHONE USERS

500

575

550

475

1970 1980 1990 2000 2010

PER 1,00,000

100

75

50

25

75



When two variables A, B are correlated, there are at least 6 possibilities:

A B

C
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• Shows the general relationship
between two variables.

• Variables are treated as 
independent of each other. 

Correlation:

• Provides a model for the 
relationship between two variables.

• They are assumed to have a cause 
and effect relationship, where one 
variable is independent (predictor) 
while the other is dependent 
(outcome). They are therefore non-
independent variables.

Regression

These two terms are frequently confused in biology!
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A linear equation can be expressed in four components:

Y-intercept, B

Gradient, m

Y = mX + B

Independent variable, X

Dependent variable, Y
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The Gradient of the Linear Regression is given by:

using any pair of points. 

With the y-intercept, we can then come up with the linear equation to represent the 
relationship between 2 variables.

Y2 – Y1M =
X2 – X1
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In reality, we also need to account for any uncertainty, which may cause the predicted 
value to vary from the actual value. 

Hence, linear regressions usually appear as:
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1 2

3 4

Relationship 
between X and 
Y is linear.

Y is distributed
normally at 
each value of X.

The variance of 
Y at every value 
of X is the same
(homogeneity of 
variances).

Each observation 
is independent
of the other.
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Standard error of Y given X. It is the average variability around the regression line at 
any given value of X. It is assumed to be equal at all values of X.
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Explains how well the regression fits the data and is bound between 0 to 1.

A2 B2 C2
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Explains how well the regression fits the data and is bound between 0 to 1.

A2 B2 C2

SStotal
Total squared distance of 
observations from naïve 
mean of y Total variation.

SSreg
Distance from regression 
line to naïve mean of y. 
Variability due to x 
(regression).

SSresidual
Variance around the 
regression line. Additional 
variability not explained by 
x—what least squares 
method aims to minimise.
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Slope (beta coefficient):

Now that we have beta, we can solve for the y intercept:

�̂�𝛽 =
𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥,𝑦𝑦)
𝑐𝑐𝑐𝑐𝑟𝑟 (𝑥𝑥)

𝐶𝐶𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐𝑡𝑡𝑐𝑐: �𝛼𝛼 = �𝑦𝑦 − �̂�𝛽 �𝑋𝑋
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Even when R2 ≠ 0, a relationship may not be present (especially if R2 is small). You can’t 
simply fit a line to everything.

I DON’T TRUST LINEAR REGRESSIONS WHEN IT’S HARDER TO GUESS THE DIRECTION OF THE 
CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

REXTHOR, THE DOG-BEARERR2=0.06
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Any linear relationship only holds true within the data range. Outside the plotted 
range, the relationship may be different and may lead to seriously biased estimates.

AS YOU CAN SEE, BY LATE NEXT MONTH YOU’LL 
HAVE OVER FOUR DOZEN HUSBANDS. 

BETTER GET A BULK RATE 
ON WEDDING CAKE.

NUMBER OF 
HUSBANDS 

YESTERDAY TODAY

1

0

a) Beware of 
extrapolation past 
the end of the data.

b) Extrapolated line is 
red, actual response 
curve is black.
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since

thus

and ,

Correlation and regression can be interconverted. SD of x and y needs to be known. 
Derivation:
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YOU SHOULD CHECK US OUT. WE’RE 
THE FASTEST-GROWING RELIGION IN 
THE COUNTRY.

FASTEST-GROWING IS 
SUCH A DUBIOUS CLAIM.

IT’S TRUE! WE GREW BY 
85% OVER THE PAST YEAR.

HEY, ROB – WANNA JOIN MY 
RELIGION?

SURE, 
WHATEVER.

WELL. LOOKS LIKE MY REGLIGION 
GREW BY 100% THIS YEAR.

WE HAVE 38,000 MEMBERS!

HOPE THEY’RE ALL OK 
WITH SECOND PLACE.

WITH ALL DUE RESPECT, SIR, I DON’T 
THINK YOU’VE THOUGHT THIS 
THROUGH.

SURE I HAVE!

I’VE GOT 
STATISTICS! I’VE 
GOT QUOTES!

UNRELATED 
STATISTICS AND 
QUOTES THAT 
YOU’VE SKEWED 
TO SUPPORT 
YOUR POINT.

WELL, MAYBE YOU’RE RIGHT. LET’S 
FOCUS TEST IT. GET SOME OUTSIDE 
OPINIONS.

YES.

AND SKEW THOSE TO SUPPORT MY 
POINT.

NO.
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VOTE FOR ME AS PRESIDENT OF THE MATH CLUB.

Normalcurvisaurus

IT’S A NON-LINEAR PATTERN WITH OUTLIERS…BUT 
FOR SOME REASON I’M VERY HAPPY WITH THE DATA.

21% OF THE BOYS AND 30% OF THE 
GIRLS SUPPORT ME; THEREFORE I’LL 
GET 51% OF THE VOTES.
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1. Descriptive statistics and inferential statistics 
are often taught as separate branches of 
statistics with different objectives. In data 
science, descriptive statistics is crucial. It will 
essentially determine the inferential 
strategies we will use later.

2. Be careful with the set up of the statistical 
tests. Be aware of the limitations and 
assumptions. 

3. Never use a one-sided test without good 
reason.

4. Correlation and regression are not the same 
things, but are closely associated. 
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