
R for Data Science - 1
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

By the end of this topic, you should be able to:
• Read the R syntax.
• Use the data structures/ objects of R.
• Deploy programming concepts in the syntax (for example, recursion, loops,

variable assignment etc.).

2

A Few Notes about R
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

R compiles and runs on Windows, Mac OS X, and numerous
UNIX platforms (such as Linux).

Download and install a copy of R from http://cran.r-project.org).

R is a “statistical programming” language providing
an optimised environment and support for statistical
computation and graphics.

It also allows integration with compiled code written in C,
C++, Fortran, Java, etc., for computationally intensive tasks
or for leveraging tools provided for other languages.

4

Amongst languages, R has the one
of the most powerful graphics
producing capabilities.

R is a highly customisable yet fully
functional programming language.

R is powerful, expandable and is
supported by an active data science/
math/ stats community.

R is free!

R is difficult to learn due to complex
syntax.

R has many different data structures.

R has relatively weak text parsing ability.

R lacks organisation, which can breed
bad coding habits in beginners.

For R Against R

5

When running R, the first thing to observe is
the Graphical User interface (GUI).

At the prompt (>), you can enter numbers
and perform calculations e.g. > 1 + 3.

You also enter commands here although this
is not a good place to develop code.

We will use an Integrated Development
Environment (IDE) instead.

6

RStudio
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

RStudio is not R.

It is a separate open-source project that brings many powerful coding tools together
into an intuitive, easy-to-learn interface. Rstudio is an Integrated Development
Environment (IDE).

It runs on all major platforms
(Windows, Mac, Linux) and also
through web browser (using the server
installation).

Download and install a copy of Rstudio:
http://www.rstudio.com/

8

An IDE facilitates code development.

It includes a console for issuing commands and a
source-code editor with a rich set of keyboard
shortcuts.

Other perks include automatic source-code
formatting, assistance with parentheses, keyword
highlighting, interfaces for compiling or running of
software, project-management features,
debugging assistance, and integration with report-
writing tools.

RStudio can do all these things.

9

The main components of RStudio are all nicely integrated into a four-panel layout that includes a
console for interactive R sessions, a tabbed source-code editor to organise a project’s files, panels with
notebooks to organise less central components, and a list of data objects already loaded into memory.

Console for
interactive R
sessions.

A tabbed source-
code editor.

Notebooks Panel

List of data objects
already loaded
into memory.

10

Entering Commands
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Console for interactive R sessions.
12

Basic Operations and Assignment
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

14

Assignment
• To assign a value to a variable:

– Type “<-” which means ←.
– The equals (=) sign can also be used.

• For example, x = 1 or x <- 1 means the same thing in R.

• However, seasoned R programmers prefer to use <-.

15

Arithmetic operations +, -, *, / and ^ are the standard arithmetic operators.

Operator Meaning

+ Plus/Summation

- Minus/Subtraction

* Times/Multiplication

/ Division (where a/b means a divide over b)

^ Power of where a^b means a to the power of b or simply ab

16

Writing and Using Functions in R
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

It is conceptually
related to OOP. But it

differs in the sense
that functions are not

initiated from a
constructor class (no

inheritance).

A function is a well-
defined autonomous

piece of code.

It can contain both
data and methods.

R has many built in
functions that can

conveniently be called
upon.

18

R functions are invoked by
their names, followed by a
parenthesis, and include
zero or more arguments.

The below example applies
the combine function c() to

merge three numeric
values into a vector.

> c(1,2,3) will return 1 2 3.

Similarly, using the sum()
function as sum(1,2,3) or

sum(c(1,2,3)) will return 6.

19

R has many functions, which for most purposes, are sufficient to
meet needs.

There are occasions however, when you have to create your own function.

This can be expressed in R as follows:
myfunction <- function(arg1, arg2, …) {
statements
return(object)
}

20

Console shows no error.

Using the function command to create a new function “my_first_function()”.

21

This function as you can see, does not actually do much. It is basically calling the sum() function within
itself and returning the output from sum(). However, the ability to combine and call functions within
functions can be very powerful and neater in terms of organisation. It is also a useful option when
writing complex code requiring repetitive components.

22

Comments in R
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Console

Code

• All the text after the pound sign "#" within the same line is considered a comment.
• A comment will not be run as part of the program. It tells you what each part of the program does.

Appropriate use of the pound sign is really important for documentation and forms part of good
coding practice.

• If you remove the pound sign from the code, errors will occur.

24

Extensions and Getting Help
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

You don’t have to
write your own

functions if someone
else has already
written them.

To install an extension
package, use the
install.packages()

function on the console.

If you know the
package name already,

use install.packages
(<package name>).

R comes prebuilt
with many

useful functions
but those aren’t
always enough.

26

Go to Tools  Install Packages, you will see several options.

The Install from drop down provides choices on
whether you want to scan for packages available in
the online repository Comprehensive R Archive
Network (CRAN), or if you want to install a locally
downloaded package.

Multiple packages can also be installed
simultaneously. Some packages require other
packages to work. They are thus dependent on
these.

Selecting Install dependencies auto installs these
other packages without you specifying them
explicitly.

27

R is extensible via packages to
supplement the base distribution.

This is supported via a worldwide repository
system, the CRAN available on the below

website: http://cran.r-project.org

As of 2011, there are more
than 3,000 such packages

hosted on CRAN.

28

• R has a very good built-in help system.
• If you know which function you want help with simply use ?<function name>.
• For example, typing ?hist will produce the following in the notebook panel.

29

• If you are looking for something more general, or you do not know the name of the exact function.
You may use the help.search() function.

• For example, typing help.search("histogram") will produce the below shown results. If not, Google
and programming forums are always your best friends.

30

Data Types in R
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

R needs to know what kind of data we are dealing with. And this in turn, dictates what
functions and methods are available. The data can be of the following types:

Character

3

Logical

4

Numeric

1

Integer
2

32

Decimal values are called numeric in R. It is
the default computational data type. If we
assign a decimal value to a variable x as
follows, x will be of numeric type.

x = 10.5 # assign a decimal value
x # print the value of x
x
[1] 10.5
class(x) #what is the class of data x belongs to?
[1] “numeric”

33

An integer is a whole number, but you cannot invoke it
simply by assigning a whole number to a variable, e.g.
Y <- 1.

Instead we use the as.integer function e.g. y =
as.integer(3); class(y). Assigning a string variable, e.g.
running as.integer(“Wilson”) on the console will
return the message ...

is.integer(Y)
[1] False #it is considered a numeric

34

A complex type in R is an imaginary number, and we
use the imaginary value i to assign this.

> z = 1 + 2i # create a complex number
> z # print the value of z
[1] 1+2i
> class(z) # print the class name of z
[1] "complex”

You will seldom use this, so we will skip ahead.

35

> x = 1; y = 2 # sample values
> z = x > y # is x larger than y?
> z # print the logical value
[1] FALSE
> class(z) # print the class name of z
[1] "logical”

A logical value (True or False) is generated via
comparisons between variables.

36

> x = as.character(3.14)
> x # print the character string
[1] "3.14"
> class(x) # print the class name of x
[1] "character"

Character object is used to store string values (e.g.
“Apple”) in R.

It can also be used to convert numeric objects into
strings.

38

To extract a substring, we apply the substr function.
Here is an example showing how to extract the
substring between the third and twelfth positions in a
string.

> substr("Mary has a little lamb.", start=3,
stop=12)
[1] "ry has a l"

39

To replace the first occurrence of the word "little" by
another word "big" in the string, we apply the sub
function.

> sub("little", "big", "Mary has a little lamb.")
[1] "Mary has a big lamb."

40

Data Structures in R
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Data types can be assembled into larger and more complex entities called data structures. R offers a
wide variety of data structures for satisfying different task requirements.

Vectors

Lists

Matrices

Data Frames

Factors

42

• A collection of entities with different lengths
• Multiple types
• Multiple data structures (vectors, matrices and data frames)

• It is 1 column or row
• Contains “level” data which describes

“levels” of classification e.g. class label A or B

Vector Matrix Data Frame

Factor List
A

A

B

B

• 1 column or row of data
• 1 type (numeric or text)

• Multiple columns and/or rows of data
• 1 type (numeric or text)

• Multiple columns and/or rows of data
• Multiple types

43

Data Structures in R: Vectors
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Check the data type using the class() function:

Vectors may be created using the c() function:

A vector is a sequence of data elements of the same
basic type. Members in a vector are officially called
components or members.

This will return “character”, “numeric”, “integer” and “logical”.

Vector

• 1 column or row of data
• 1 type (numeric or text)

45

Using rep()

Using seq()

Other ways of creating vectors

46

S = c("aa", "bb", "cc", "dd", "ee")

aa bb cc dd eeS =

The location of each element is marked by a position index.

aa bb cc dd eeS =

Position 1 2 3 4 5

S[3] = aa bb cc dd ee

Position 1 2 3 4 5

S[3] = c(“cc”)

We retrieve values in a vector by declaring an index inside a single square bracket "[]" operator.

47

If an index is out-of-range, a missing value will be reported via the symbol NA. For example, S[10] will
return NA.

aa bb cc dd eeS =

Position 1 2 3 4 5

S[-3] = aa bb cc dd ee

Position 1 2 3 4 5

S[-3] = c(“aa”, “bb”, “dd”, “ee”)

If the index is negative, it would strip the member whose position has the same absolute value as the
negative index.

48

S = c("aa", "bb", "cc", "dd", "ee")

aa bb cc dd eeS =

Position 1 2 3 4 5

S[c(2, 3)] = aa bb cc dd ee

Position 1 2 3 4 5

S[c(2, 3)] = c("bb", "cc")

A new vector, S, can be sliced from a given vector with a numeric index vector, which consists of member
positions of the original vector to be retrieved.

49

S = c("aa", "bb", "cc", "dd", "ee")

aa bb cc dd eeS =

Position 1 2 3 4 5

S[2:4] = aa bb cc dd ee

Position 1 2 3 4 5

S[2:4] = c("bb", "cc”, “dd”)

Or more simply, we can simply supply a range index, for example, S[Start:End].

50

S = c("aa", "bb", "cc", "dd", "ee")

1 2 3 4 5S =

Position 1 2 3 4 5

S = 1 2 3 4 5

Position 1 2 3 4 5

S[S < 3] = c(1,2)

Vectors can be subsetted by specifying a condition. Let’s create a vector with values from 1 to 5; S = 1:5.

We now specify a condition on S, S[S < 3].

51

a = c(1, 3, 5, 7) b = c(1, 2, 4, 8)

1 3 5 7a =

Position 1 2 3 4

Arithmetic operations of vectors are performed member-by-member.

1 2 4 8b =

2 5 9 15a +b =

5 15 25 35a * 5 =

52

V = c("Mary", "Sue")

Mary SueV =

Position 1 2

names(V) = c("First", "Last")

Members in a vector can have names. This is useful when you want to access a member by its name
rather than by its position count.

We now name the first member as First, and the second as Last.

Mary SueV =

Position 1 2

Name “First” “Last”

53

names(V) = c("First", "Last")

Mary SueV =

Name “First” “Last”

V["First"] = “Mary”

Members in a vector can have names. This is useful when you want to access a member by its name
rather than by its position count.

Instead of using numerical index, we can now retrieve the first member by its name.

Mary SueV["First"] =

Position 1 2

Name “First” “Last”

Position 1 2

54

names(V) = c("First", "Last")

V[c("Last", "First")]

Mary SueV [c("Last", "First")] =

Name “First” “Last”

We can even reverse the order of V with a character string index vector containing the names.

Sue MaryV [c("Last", "First")] =

Position 1 2

55

Data Structures in R: Matrices
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Matrix

• Multiple columns and/or rows of data
• 1 type (numeric or text)

A matrix is a collection of data elements arranged in a two-dimensional rectangular layout.

57

We reproduce a memory representation of the matrix in R with the matrix() function. The data elements
must be of the same data type. There are several ways of using the matrix() function. A not so common
way:

x = 1 2 3 4 6

x =

5

1 3 5

2 4 6
58

2 columns
3 rows

3 columns
2 rows

The earlier expression can be made more elegant
by writing it as one line.

We can also combine 2 vectors of similar length
using row bind (rbind) or column bind (cbind). m1

1 10
1 3

m2

2

2 11

3 12
10 1211

59

You may access individual elements by A[x, y], where x is the row number and y is the column number.

1 2 3 1 32

10 11 12 10 1211

A[,3]= A[2,] =

10 11 12 3

12

A[,1:3]=A =

60

Data Structures in R: Factors
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Factors are used to describe entities (samples) that
can take on a class label (a category) e.g. disease or
normal, rich or poor.

Unlike vectors, factors can take on only a finite set
of values (levels), as many categories as there are
e.g. rich and poor (number of levels = 2); good,
moderate, excellent (number of levels = 3).

Factors are initiated using the factor() function.

Factor

• It is 1 column or row
• Contains “level” data which describes

“levels” of classification e.g. class label A or B

A

A

B

B

62

Factors have a levels attribute listing its unique categories. Access levels attribute with
levels() function.

In which case we will get "f” "m”.

63

Factor levels follow numerical or alphabetical ordering. So running levels(fo) will
naturally return a vector as “high”, “low”, “med”, which doesn’t really make sense to
us. We can fix this by specifying the order ourselves.

Consider the following factor, fo:

64

F=="A” gives us a logical vector
TRUE TRUE FALSE

We may use this expression to
extract from X all the samples
corresponding to class A.

Expression Data Matrix SampleFactor

x =

2 3 5

2 4 6

Sample

1 2 3

2 4 6

F = factor(c(“A”,”A”,”B”))

A A B

Sample

X[,F=="A"] =

2 3

2 4

2 4

1 2

65

Data Structures in R: Data Frames
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Although more often we
auto-create data.frame by
reading some data from a
file using the read.table()
function

x is numeric
y is character
f is factor

df =

Data Frame

• Multiple columns and/or rows of data
• Multiple types

A data frame is used for storing data tables. It is less
strict than a matrix, allowing different data types to
be incorporated. It is a collection of vectors and/or
factors all having the same length. A data frame
generally has column names and row names
attributes. You instantiate a data.frame with
function data.frame().

2
3

b
c

f
m

x y fnames
1 a m

67

R provides some example data that can be called using the data() function.

The iris’ data.frame which gives the measurements in centimeters of the variables sepal length and
width and petal length and width, respectively, for 50 flowers from each of 3 species of iris.

To explore the data frame, the following functions are useful:

68

Like matrices, the [i,j]-index notation is valid also for data.frames.

df = 2
3

b
c

f
m

x y fnames
1 a m

df[,1] = 2
3

1
df[2,1] = b

69

Using the $ notation

Alternatively, we may also access parts of the data frame via name.

df = 2
3

b
c

f
m

x y fnames
1 a m

df$y = b
c

a

Quoting the name in the jth slot

df[,”f”] = f
m

m

df[,c(“x”,”f”)] = 2
3

f
m

1 m

70

Data Structures in R: Lists
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

x = list(n, s, b, 3)

A list is a generic vector that can contain multiple data types. Unlike a data frame, it can contain multiple
data structures of different dimensions. A list is instantiated using the list() function.

3
5

bb
cc

FALSE
TRUE

n s b
2 aa TRUE

dd
ee

FALSE
FALSE

numeric character logical

3
5

bb
cc

FALSE
TRUE

n s b
2 aa TRUE

dd
ee

FALSE
FALSE

3x =

Position 1 2 3 4

72

We retrieve a list slice with the single square bracket "[]" operator. The following is a slice containing the
second member of x, which is a copy of s.

3
5

bb
cc

FALSE
TRUE

n s b
2 aa TRUE

dd
ee

FALSE
FALSE

bb
cc

aa

dd
ee

x[2] =

Position 1 2 3 4

3x[2] =

73

We may access multiple elements of a list by specifying a vector of position indices.

3
5

bb
cc

FALSE
TRUE

n s b
2 aa TRUE

dd
ee

FALSE
FALSE

bb
cc

aa

dd
ee

x[c(2,4)] =

Position 1 2 3 4

3x[c(2,4)] =

3

74

List entities can be access via double brackets [[]]. This is a member reference, and allows us to access a
part of the list instead of subsetting it as a separate entity

3
5

bb
cc

FALSE
TRUE

n s b
2 aa TRUE

dd
ee

FALSE
FALSE

Position 1 2 3 4

3x[[2]] =

75

The use of [[]] allows us to change values inside x.

We access list element 2, at its first position. And changed its value

3
5

bb
cc

FALSE
TRUE

n s b
2 aa TRUE

dd
ee

FALSE
FALSE

Position 1 2 3 4

3x[[2]] =
3
5

bb
cc

FALSE
TRUE

n s b
2 ta TRUE

dd
ee

FALSE
FALSE

Position 1 2 3 4

3x[[2]][1] = "ta” =

76

v = list(bob=c(2, 3, 5), john=c("aa", "bb"))

2

3

5

bob john

aa

bb

Position 1 2

v =

v["bob"] =
2

3

5

v[c("john", "bob")] =
2

3

5

aa

bb

v[["bob"]] =

2

3

5

aa

bbv$bob =

2

3

5

We can assign names to list members, and reference them by names instead of numeric indexes.

77

Summary
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

1. The R language syntax is quite flexible and allows
for various approaches for tackling the same
problem. This flexibility is extremely powerful, but
can also make R difficult to learn. A key feature of
R is it allows you to get quite far with interactive
programming, as you executing simple expressions
line-by-line from a script into the R console. This
interactive approach to programming allows
development on the fly. But can also breed bad
habits in new programmers.

2. R offers a wide variety of data structures for
satisfying different task requirements. The basic
data structures in R are vectors, lists, matrices,
data frames and factors.

79

	Slide Number 1
	Learning Objectives
	Slide Number 3
	R is a Statistical Programming Language
	Why R?
	The GUI and Command Prompt
	Slide Number 7
	What is RStudio?
	Why use an IDE?
	Layout of RStudio
	Slide Number 11
	Entering Commands via the Console
	Slide Number 13
	Operations on the Console
	Assignment
	Basic Arithmetic Operations and Value Assignment
	Slide Number 17
	What is a Function?
	Invoking R Functions
	Creating Your Own Function
	Creating Your Own Function
	Creating Your Own Function
	Slide Number 23
	Comments
	Slide Number 25
	Extension Package
	Extension Package in RStudio
	CRAN
	Getting Help
	Getting Help
	Slide Number 31
	Data Types
	Numeric
	Integer
	Complex
	Logical
	Character
	Character
	Character
	Slide Number 41
	Data Structures in R
	Data Structures in R
	Slide Number 44
	Vectors
	Vectors
	Vector Index
	Negative Vector Index
	Vector Slicing
	Vector Slicing
	Vector Subsetting
	Performing Arithmetic on Vectors
	Named Vectors
	Named Vectors
	Named Vectors
	Slide Number 56
	Matrices
	Building Matrices
	Matrix
	Accessing Parts of Matrices
	Slide Number 61
	Factors
	Factors and Levels
	Changing Level Ordering
	Subsetting Data Using Factors
	Slide Number 66
	Data Frame
	Exploring Data Frames
	Subsetting Data Frames
	Subsetting Data Frames
	Slide Number 71
	Lists
	List Slicing
	List Slicing
	List Member Reference
	List Member Reference
	List Member Names
	Slide Number 78
	Key Takeaways from this Topic

