TECHNOLOGICA

‘ f 2 UNIVERSITY
” SINGAPORE

R-for Data Science - 1
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Learning Objectives

By the end of this topic, you should be able to:
* Read the R syntax.
* Use the data structures/ objects of R.

* Deploy programming concepts in the syntax (for example, recursion, loops,
variable assignment etc.).

TECHNOLOGICAL
*) UNIVERSITY

SINGAPORE

EREEH NANYANG

[\

R is a Statistical Programming Languagl."e\"‘\-

R is a “statistical programming” language providing L
an optimised environment and support for statistical
computation and graphics.

Download and install a copy of R from http://cran.r-project.org).

Why R?

R is a highly customisable yet fully
functional programming language.

R is powerful, expandable and is
supported by an active data science/
math/ stats community.

Amongst languages, R has the one
of the most powerful graphics
producing capabilities.

R lacks organisation, which can breed

R is difficult to learn due to complex
syntax.

R has many different data structures.

R has relatively weak text parsing ability.

bad coding habits in beginners.

The GUI and Command Prompt

When running R, the first thing to observe is
the Graphical User interface (GUI).

At the prompt (>), you can enter numbers
and perform calculations e.g. > 1 + 3.

You also enter commands here although this
is not a good place to develop code.

We will use an Integrated Development
Environment (IDE) instead.

File Edit Misc Packages ‘Windows Help

EECEIREE —

i R Console |-_| |E| |§|

R : Copyright 2006, The B Foundation for Statistical Computing
Version 2.3.1 (2006-06-01)
I3EN 3-200051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
Tou are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Martural language sSupport but runhing in an English locale
R is & collaborative project with many contributors.
Type 'contributors()' for more information and
'zitation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.starci)' for an HTHL browser interface to help.

Type 'gf)' to guit R.

[Previously saved workspace restored]

> 1

R 2.3.1 - & Language and Environment r

ENEE NANYANG
| TECHNOLOGICAL
UNIVERSITY

SINGAPORE

What is RStudio?

It runs on all major platforms
(Windows, Mac, Linux) and also
through web browser (using the server
installation).

Why use an IDE?

An IDE facilitates code development.

It includes a console for issuing commands and a
source-code editor with a rich set of keyboard
shortcuts.

Other perks include automatic source-code

formatting, assistance with parentheses, keyword
highlighting, interfaces for compiling or running of
software, project-management features,
debugging assistance, and integration with report-
writing tools.

RStudio can do all these things.

Layout of RStudio

RStudio File Edit Code View Plots Session Build Debug Profile Tools Window Help @3 R @M S o« 88%[%) EEusS. Tue2:00PM

[) @® ~/OneDrive/R_package_dev/NetProt - master - RStudio

Q1| &2~ R ~ | Addins ~ & NetProt ~
7 GDS4051.R Environment History Build Git

’

¥ [4 Import Dataset ~ List =

i Source on Save ‘:‘\ VAR - ~# Run b9 | | Source ~

Global Environment ~

library(GEOquery)
library(scatterplot3d)

VoraryComeritier List of data objects
A ta b b e d SO u rc e_ 5 strong_sig <- read.table("strong_signature.txt")[,1] J
already loaded

COd e ed Ito r. GDS4051 <- getGEO("GDS4051", GSEMatrix= AnnotGPL= tGPL=) 1
disease_;acie« Columns(GDSl’tOSl)[t:ZSIX_ e B % B I nto m e m O ry-

kable(Columns(GDS4051)[,2])
GDS4051_eset <- GDS2eSet(GDS4051,do.log2=F)

colnames(fData(GDS4051_eset))[4]

(Top Leve]) R Script

Console
You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Files Plots Packages Help Viewer

Natural language support but running in an English locale | Export ~

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q(Q)' to quit R.

During startup - Warning messages:

: Setting LC_CTYPE failed, using "C"

: Setting LC_COLLATE failed, using "C"
: Setting LC_TIME failed, using "C"

: Setting LC_MESSAGES failed, using "C"
: Setting LC_MONETARY failed, using "C"

The main components of RStudio are all nicely integrated into a four-panel layout that includes a
, a tabbed source-code editor to organise a project’s files,
components, and a list of data objects already loaded into memory.

ENEE NANYANG
| TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Entering
BS3033 Da

Dr Wilson GC
School of Biological

Entering Commands via the Console

RStudio File Edit Code View Plots Session Build

Debug

Profile Tools Window Help

Tue 2:00 PM

~/OneDrive/R_package_dev/NetProt - master - RStudio

Addins -~

@] GDS4051.R
Q

Source on Save

lTibraryCGEOquery)
Library(scatterplot3d)
library(Cgenefilter)

VRNOUHAWNR

strong_sig <- read.table("strong_signature.txt")[,1]

GDS4051 <- getGEOC"GDS4@51", GSEMatrix=
disease_fact <- Columns(GDS4@51)[,2]
kableCColumns(GDS4@51> [, 21D

GDS4051_eset <- GDSZeSet(GDS4051,do.log2=F)

> AnnNotGPL=

colnames(fData(GDS4051_eset))[4]

(Top Leve-l)

You are welcome to redistribute it under certain conditions
Type "license()' or 'licence()" for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type "contributors()' for more information and
"citation()' on how to cite R or R packages in publications

Type "demo()" for some demos, "help(D' for on-line help, or
"help.start()" for an HTML browser interface to help.
Type "qCD" to quit R.

During startup - Warning messages:

1l: Setting LC_CTYPE failed, using "
Setting LC_COLLATE failed, using
Setting LC_TIME failed, using "C"
Setting LC_MESSAGES failed, using "C"
Setting LC_MONETARY failed, using "C"

,getGPL=

R Script

Console for interactive R sessions.

Environment History Build

T = _* Import Dataset -

Global Environment -

Files Plots Packages Help

@5 Export -

Viewer

EEEH NANYANG
= | TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Operations on the Console

Console
- &

(1] 4
> 2 _

Error:
>

unexpected

14

Assignment

r

o

e To assign a value to a variable:

— Type “<-” which means <.
— The equals (=) sign can also be used.
For example, x =1 or x <- 1 means the same thing in R.

r

-

However, seasoned R programmers prefer to use <-.

15

Basic Arithmetic Operations and Value Assignment

Arithmetic operations +, -, *, / and M are the standard arithmetic operators.

Operator Meaning

+ Plus/Summation

- Minus/Subtraction

* Times/Multiplication

/ Division (where a/b means a divide over b)

A Power of where ab means a to the power of b or simply a®

RogEd NANYANG
< | TECHNOLOGICAL
-, UNIVERSITY

SINGAPORE

Jsing Functions in R
1ce for Biologists

What is a Function?

A function is a well-
defined autonomous
piece of code.

It is conceptually
related to OOP. But it
differs in the sense
that functions are not
initiated from a
constructor class (no
inheritance).

It can contain both
data and methods.

R has many built in
functions that can
conveniently be called
upon.

18

Invoking R Functions

19

Creating Your Own Function

R has many functions, which for most purposes, are sufficient to
meet needs.

There are occasions however, when you have to create your own function.

]
This can be expressed in R as follows:

myfunction <- function(arg1, arg2, ...) {
statements
return(object)

}

20

Creating Your Own Function

Using the function command to create a new function “my_first_function()”.

my_first_function <- function(x)

Qoo~NOOTU & W

will be done in this function
the variable y as output
.

. |

Creating Your Own Function

my_first_function <- function(x)
{

Y <- sum(x)

returnCy)
¥

3
4
5
6
Fid
8
9
o

1

my_first_function(c(1,2,3))]

> my_first_function(c(1,2,3))
[1] 6

This function as you can see, does not actually do much. It is basically calling the sum() function within
itself and returning the output from sum(). However, the ability to combine and call functions within
functions can be very powerful and neater in terms of organisation. It is also a useful option when
writing complex code requiring repetitive components.

ENEE NANYANG
| TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Comments

my_first_function <- function(x)

4
returnCy)

Code
}

3
4
5
6
7
8
9

FTLrST_TUrNnCCLori L T rame o CriLS FuarpcC C Lor

= e e e) R e S
IY_TLrsStT_Tunction <- Uunction{ x) #< LNpUt 1S X

instructs what will be done in this functior
Console nstructs wh vill be done in this function

to return the wvariable y as output
2

=

» All the text after the pound sign "#" within the same line is considered a comment.

A comment will not be run as part of the program. It tells you what each part of the program does.
Appropriate use of the pound sign is really important for documentation and forms part of good
coding practice.

* If you remove the pound sign from the code, errors will occur.

ENEE NANYANG
T & TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Extension Package

R comes prebuilt
with many
useful functions
but those aren’t
always enough.

You don’t have to
write your own
functions if someone
else has already
written them.

To install an extension
package, use the
install.packages()

function on the console.

If you know the
package name already,
use install.packages
(<package name>).

26

Extension Package in RStudio

Go to Tools = Install Packages, you will see several options.

T
Install Packages

Install from: ? Configuring Repositories

Repository (CRAN) B

Packages (separate multiple with space or comma):

The Install from drop down provides choices on
whether you want to scan for packages available in
the online repository Comprehensive R Archive
Network (CRAN), or if you want to install a locally
downloaded package.

Install to Library:
/Library/Frameworks/R.framework/Versions/3.4/Resources/libr a

Multiple packages can also be installed
simultaneously. Some packages require other
packages to work. They are thus dependent on
these.

v|Install dependencies

[Install J Cancel

Selecting Install dependencies auto installs these
other packages without you specifying them
explicitly.

27

CRAN

This is supported via a worldwide repository
system, the CRAN available on the below
website: http://cran.r-project.org

As of 2011, there are more
than 3,000 such packages
hosted on CRAN.

28

Getting Help

R has avery good built-in help system.
* If you know which function you want help with simply use ?<function name>.

* For example, typing ?hist will produce the following in the notebook panel.

hist {graphics} R Documentation

Histograms

Description

The generic function hist computes a histogram of the given data values. If plot = TRUE, the resulting object of class

"histogram" is plotted by plot.histogram, before it is returned.

Usage
hist(x, ...)

Default S3 method:
hist(x, breaks = "Sturges",

Getting Help

 If you are looking for something more general, or you do not know the name of the exact function.
You may use the help.search() function.

* For example, typing help.search("histogram") will produce the below shown results. If not, Google
and programming forums are always your best friends.

Search Results

Help pages:

KermnSmooth::dpih

MASS: hist.scott
MASS: - ldahist
MASS:ttruehist
caret:i:densitvplot.rfe
caret: histogrami ..train
ggplot2::geom_ freqpoly
grDevices:-nclass.Sturges
graphics::hist. PO SI>Xt
graphics::hist
graphics::plot.histogram
lattice:thistogram

lattice: ;panel.histogram
lattice:;prepanel.default. bwplot
sfsmisc:histBxp

Select a Histogram Bin Width

Plot a Histogram with Automatic Bin Width Selection
Histograms or Density Plots of Multiple Groups

Plot a Histogram

Lattice functions for plotting resampling results of recursive feature selection
Lattice functions for plotting resampling results
Histograms and frequency polygons

Compute the Number of Classes for a Histogram
Histogram of a Date or Date-Time Object
Histograms

Plot Histograms

Histograms and Kermel Density Plots

Default Panel Function for histogram

Default Prepanel Functions

Plot a Histogram and a Boxplot

ENEE NANYANG
| TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Data Types

R needs to know what kind of data we are dealing with. And this in turn, dictates what
functions and methods are available. The data can be of the following types:

)

Integer

Numeric

P
'S

Logical

Character

)

Numeric

b= =

Decimal values are called numericin R. It s
the default computational data type. If we
assign a decimal value to a variable x as
follows, x will be of numeric type.

x =10.5 # assign a decimal value

X # print the value of x

X

[1] 10.5

class(x) #what 1s the class of data x belongs to?
[1] “numeric”

Integer

An integer is a whole number, but you cannot invoke it
simply by assigning a whole number to a variable, e.g.
Y <- 1.

is.integer(Y)
[1] False #it is considered a numeric

Instead we use the as.integer functione.g.y =
as.integer(3); class(y). Assigning a string variable, e.g.
running as.integer(“Wilson”) on the console will
return the message ...

Complex

A complex type in R is an imaginary number, and we
use the imaginary value i to assign this.

>z=1+2i # create a complex number
>Z # print the value of z

[1] 1+2i

> class(z) # print the class name of z
[1] "complex”

You will seldom use this, so we will skip ahead.

Logical

b= =

A logical value (True or False) is generated via
comparisons between variables.

>x=1;,y=2 #sample values
>Z=X>Yy # is x larger than y?

>Z # print the logical value

[1] FALSE

> class(z) # print the class name of z
[1] "logical”

Character

b= =

Character object is used to store string values (e.g.
“Apple”) in R.

It can also be used to convert numeric objects into
strings.

> X = as.character(3.14)

> X # print the character string
[1] "3.14"

> class(x) # print the class name of x
[1] "character”

Character

& =

To extract a substring, we apply the substr function.
Here is an example showing how to extract the
substring between the third and twelfth positions in a
string.

> substr("Mary has a little lamb.", start=3,
stop=12)

[1] "ry has a I"

Character

b= =

To replace the first occurrence of the word "little" by
another word "big" in the string, we apply the sub
function.

> sub("little”, "big", "Mary has a little lamb.")
[1] "Mary has a big lamb."

TECHNOLOGICAL
*) UNIVERSITY

SINGAPORE

EREEH NANYANG

Data Structures in R

Data types can be assembled into larger and more complex entities called data structures. R offers a
wide variety of data structures for satisfying different task requirements.

DEIERACINES

42

Data Structures in R

* 1 column or row of data
* 1 type (numeric or text)

* Multiple columns and/or rows of data * Multiple columns and/or rows of data

e 1type (numeric or text) * Multiple types

* Itis 1 column or row
* Contains “level” data which describes
“levels” of classification e.g. class label A or B

* A collection of entities with different lengths
* Multiple types
* Multiple data structures (vectors, matrices and data frames)

43

ENEE NANYANG
T & TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Vectors

A vector is a sequence of data elements of the same

basic type. Members in a vector are officially called
components or members.

Vectors may be created using the c() function:

c("Hola", "Ciao", "Hello", "Bonjour") # character vector
c(0.99, 2.4, 1.4, 5.9) # numeric vector

c(lL, 2L, 3L, 4L) # integer vector

c(TRUE, TRUE, FALSE, TRUE) # logical vector

Check the data type using the class() function:

class(c("Hola", "Ciao", "Hello", "Bonjour"))
class(c(0.99, 2.4, 1.4, 5.9))

class(Cc(lL, 2L, 3L, 4L))

class(c(TRUE, TRUE, FALSE, TRUE))

n u

This will return “character”, “numeric”, “integer” and “logical”.

n «u

* 1 column or row of data
* 1 type (numeric or text)

45

Vectors

Other ways of creating vectors

Using seq()

seq(from = 1, to = 4, by = 1)

seq(from=1, to=4) # by=1 1s default

seq(l, 4) # arguments 1n R can be matched by position
1:4 # common operations 1n R have shortcuts

Using rep()

rep(x = "a", times = 4) # replicate "a" four times
rep("a", 4) # same as above

rep(c("a”, "b"), times = 2) # same but for a wvector
rep(c("a”, "b"), each = 2) # element-by-element

We retrieve values in a vector by declaring an index inside a single square bracket "[]" operator.

Vector Index

S - C("aa"' IIbeI’ IICCH’ Ilddll’ Ileell)

dd

bb

CcC

dd

ee

Position 1 2 3 4 5

S= aa bb cC dd ee
Position 1 2 3 4 5
S[3] = aa bb cc dd ee

S[3] = ¢(“cc”)

47

Negative Vector Index

If the index is negative, it would strip the member whose position has the same absolute value as the

negative index.

Position 1 2 3 4 5

S= aa bb cC dd ee
Position 1 2 x 4 5
S[-3] = aa bb cc dd ee

S[_3] = C(Ilaa”’ Ilbb”’ lldd”’ lleell)

If an index is out-of-range, a missing value will be reported via the symbol NA. For example, S[10] will

return NA.

48

Vector Slicing

A new vector, S, can be sliced from a given vector with a numeric index vector, which consists of member

positions of the original vector to be retrieved.

Position 1 2 3 4 5
S= aa bb cc dd ee
Position 1 2 3 4 5
S[c(2,3)] 5 aa bb cc dd ee

S[c(2, 3)] = c("bb", "cc")

49

Vector Slicing

Or more simply, we can simply supply a range index, for example, S[Start:End].

Position 1 2 3 4 5
S= aa bb ccC dd ee
Position 1 2 3 4 5
S[2:4] = aa bb cc dd ee
S[2:4] - C(Ilbbll’ "CC”’ llddll)

Vectors can be subsetted by specifying a condition. Let’s create a vector with values from 1 to 5; S = 1:5.

Position

1

Vector Subsetting

1

S[S<3]=c¢(1,2)

51

Performing Arithmetic on Vectors

Arithmetic operations of vectors are performed member-by-member.

a=c(1,3,57) b=c(1,2,4,8)

Position 1 2 3 4
a= 1 3 5 7
b = 1 2 4 8
a+b= 2 5 9 15
a*5= 5 15 25 35

52

Named Vectors

Members in a vector can have names. This is useful when you want to access a member by its name

rather than by its position count.

V =c("Mary", "Sue")

Position 1 2

V= Mary Sue

We now name the first member as First, and the second as Last.

names(V) = c("First", "Last")

Position 1 2

Name “First” “Last”

V= Mary Sue

53

Named Vectors

Members in a vector can have names. This is useful when you want to access a member by its name

rather than by its position count.

names(V) = c("First", "Last")

Position 1 2
Name “First” “Last”
V= Mary Sue

Instead of using numerical index, we can now retrieve the first member by its name.

Position 1 2

Name “First” “Last”

V["First"] = | Mary Sue

V["First"] = “Mary”

54

Named Vectors

We can even reverse the order of V with a character string index vector containing the names.

V[c("Last", "First")]
names(V) = c("First", "Last")

Position r\

Name “First” “Last”

V [c("Last", "First")] = Mary Sue

V [c("Last", "First")] = Sue Mary

55

ENEE NANYANG
T & TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Matrices

A matrix is a collection of data elements arranged in a two-dimensional rectangular layout.

* Multiple columns and/or rows of data
e 1type (numeric or text)

57

Building Matrices

We reproduce a memory representation of the matrix in R with the matrix() function. The data elements

must be of the same data type. There are several ways of using the matrix() function. A not so common
way:

1 x <- 1:6 # take a wvector

2 dim(x) # wvector do not have dimension attribute

3 dim(x) <- c(2, 3D # 1mpose a 2x3 dimesion (2 rows, 3 columns)
4 class(x) # here 1t 1s a matrix!

5 X

Matrix

The earlier expression can be made more elegant
by writing it as one line.

1 m <- matrix(data = 1:6, nrow = 2, ncol = 3)
2 class(m)
3 dim(m)

We can also combine 2 vectors of similar length

using row bind (rbind) or column bind (cbind). ml
3 rows

X == il1i3

y <- 10:12 1 10
ml <- cbind(x,y)

m2 <- rbind(x,y) 2 11
class(ml)

class(m2) 3 12

m2
3 columns
2 rows
1 2 3
10 11 12

59

Accessing Parts of Matrices

You may access individual elements by A[x, y], where x is the row number and y is the column number.

A= A[,1:3]=
1 2 3 1 2 3
10 11 12 10 11 12
Al2,] = A[,3]=
10 11 12 3
12

60

ENEE NANYANG
T & TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Factors

Factors are used to describe entities (samples) that
can take on a class label (a category) e.g. disease or
normal, rich or poor.

Unlike vectors, factors can take on only a finite set

of values (levels), as many categories as there are
e.g. rich and poor (number of levels = 2); good,
moderate, excellent (number of levels = 3).

Factors are initiated using the factor() function.

l 'F{- 'F[]Ctor'(C(H_Fll, Hml'l', HmlI" II_FH’ I'I'_FII))

2 class(f)

e Jtis 1 column orrow
* Contains “level” data which describes

“levels” of classification e.g. class label A or B

62

Factors and Levels

l _F {_ 'F-l:ICtDr"(C(!!_Fl'l': !!ml'l', !!ml'l', I'I'_Fl'l', I'I'_FII:))
2 class(f)

Factors have a levels attribute listing its unique categories. Access levels attribute with
levels() function.

In which case we will get "f” "m”.

Changing Level Ordering

1 fo <- factor(C c("low”, "med", "low", "high"), ordered = TRUE)
0 CcVE D110 C 0 () JEC O1de < 0 P 1eVE @
C C O < 0 =10 1 OC Cd C C c L0
C J 0ls < c Oordaer o C C
1 Llevels(fo) <- c("low"”, "med", "high") # re-order

64

Expression Data Matrix

Subsetting Data Using Factors

Sample F — factor(C(”A"’"A”’” BII))
2 3
3 5 A A B
4 6
=="A" gives us a logical vector
4 6 TRUE TRUE FALSE

We may use this expression to
extract from X all the samples
corresponding to class A.

Sample

X[’ ==||All] = 2

65

ENEE NANYANG
T & TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Data Frame

A data Trame 2d TO O o data taple -
C d e dil(2 0 ol = UdLlc) C
JC Orporalted DI1E U O - U U/0
dClO d d e Same leng A datad e
generd aS CO ames and ro aMme
z pDUTE 0 antiate a data.trame
0N dad S
1 df <- data.frame(x = 1:3, yv = c("a b c"),
2 f = factor(c("m", "f", "m")))
3 class(df)
names X y f
1 jla |lm X is numeric
df = 2 [b JLf y is character
3 C m fis factor

* Multiple columns and/or rows of data
* Multiple types

Although more often we
auto-create data.frame by
reading some data from a
file using the read.table()
function

67

Exploring Data Frames

striris) # returns a compact summary of R objects
summary(Ciris) # few statistics for each wvariable
head(Ciris, n = 20) # wvisualize first 20 observations

tail(iris) # last 6 obserwvations

68

Subsetting Data Frames

Like matrices, the [i,j]-index notation is valid also for data.frames.

names X y f
1 a m
df = 2 b f
3 C m
dff,1] = 2 df(2,1] = b
3

69

Subsetting Data Frames

Alternatively, we may also access parts of the data frame via name.

names X Yy f
1 a m
df = 2 b f
3 C m
Using the S notation Quoting the name in the jth slot
a m
dfsy= [b df)= [f
C m
m
df[’C(”X”’”f”)] - 2 f
3 m

TECHNOLOGICAL
*) UNIVERSITY

SINGAPORE

EREEH NANYANG

Lists

A list is a generic vector that can contain multiple data types. Unlike a data frame, it can contain multiple

data structures of different dimensions. A list is instantiated using the list() function.

Position 1 2 3 4
n S b n S b
2 aa || TRUE x= | 2 aa || TRUE 3
3 bb || FALSE 3 bb || FALSE
5 cc || TRUE 5 cc || TRUE
dd FALSE dd FALSE
ee FALSE ee FALSE

numeric character logical

72

List Slicing

We retrieve a list slice with the single square bracket "[]" operator. The following is a slice containing the

second member of x, which is a copy of s.

Position 1 2 3 4
n S b
X[2] = 2 aa || TRUE || 3 X[2]= | aa
3 bb || FALSE bb
5 cc || TRUE cC
dd || FALSE dd
ee FALSE ee

73

We may access multiple elements of a list by specifying a vector of position indices.

Position

x[c(2,4)] =

1 2 3

n S b

2 aa || TRUE

3 bb || FALSE

5 cc || TRUE
dd FALSE
ee FALSE

x[c(2,4)] =

List Slicing

aa 3

bb

CC

dd

ee

74

List Member Reference

List entities can be access via double brackets [[]]. This is a member reference, and allows us to access a

part of the list instead of subsetting it as a separate entity

Position 1 2 3 4
n S b
x[[2]] = 2 aa || TRUE || 3
3 bb || FALSE
5 cc || TRUE
dd FALSE
ee FALSE

75

List Member Reference

The use of [[]] allows us to change values inside x.

Position 1 2 4 Position 2 3 4
n b \r\g b
X[[2]] = 2 |l aa ||| TRUE || 3 X[[2]][1] = "ta” = 2 ta ||| TRUE || 3
3 bb ||| FALSE 3 bb ||| FALSE
5 cc ||| TRUE 5 cc ||| TRUE
dd ||| FALSE dd ||| FALSE
ee ||| FALSE ee ||| FALSE

We access list element 2, at its first position. And changed its value

List Member Names

We can assign names to list members, and reference them by names instead of numeric indexes.

v = list(bob=c(2, 3, 5), john=c("aa", "bb"))
Position 1 2 5 aa 2
bob john V["bOb"] I — V[C("john", ubobn)] = e —
3 bb 3
2 dad 1 ———|
V= 3 bb
5
2 2 aa
v[["bob"]] =
vSbob = 3 = bb
5 5

77

ENEE NANYANG
| TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Key Takeaways from this Topic

1. The R language syntax is quite flexible and allows
for various approaches for tackling the same
problem. This flexibility is extremely powerful, but
can also make R difficult to learn. A key feature of
R is it allows you to get quite far with interactive
programming, as you executing simple expressions
line-by-line from a script into the R console. This
interactive approach to programming allows
development on the fly. But can also breed bad
habits in new programmers.

2. R offers a wide variety of data structures for
satisfying different task requirements. The basic
data structures in R are vectors, lists, matrices,
data frames and factors.

79

	Slide Number 1
	Learning Objectives
	Slide Number 3
	R is a Statistical Programming Language
	Why R?
	The GUI and Command Prompt
	Slide Number 7
	What is RStudio?
	Why use an IDE?
	Layout of RStudio
	Slide Number 11
	Entering Commands via the Console
	Slide Number 13
	Operations on the Console
	Assignment
	Basic Arithmetic Operations and Value Assignment
	Slide Number 17
	What is a Function?
	Invoking R Functions
	Creating Your Own Function
	Creating Your Own Function
	Creating Your Own Function
	Slide Number 23
	Comments
	Slide Number 25
	Extension Package
	Extension Package in RStudio
	CRAN
	Getting Help
	Getting Help
	Slide Number 31
	Data Types
	Numeric
	Integer
	Complex
	Logical
	Character
	Character
	Character
	Slide Number 41
	Data Structures in R
	Data Structures in R
	Slide Number 44
	Vectors
	Vectors
	Vector Index
	Negative Vector Index
	Vector Slicing
	Vector Slicing
	Vector Subsetting
	Performing Arithmetic on Vectors
	Named Vectors
	Named Vectors
	Named Vectors
	Slide Number 56
	Matrices
	Building Matrices
	Matrix
	Accessing Parts of Matrices
	Slide Number 61
	Factors
	Factors and Levels
	Changing Level Ordering
	Subsetting Data Using Factors
	Slide Number 66
	Data Frame
	Exploring Data Frames
	Subsetting Data Frames
	Subsetting Data Frames
	Slide Number 71
	Lists
	List Slicing
	List Slicing
	List Member Reference
	List Member Reference
	List Member Names
	Slide Number 78
	Key Takeaways from this Topic

