
Programming Languages
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

By the end of this topic, you should be able to:
• Describe the gamut of programming languages.
• Explain why R is well-suited for data science.
• Explain PERL’s attributes for early success during the human genome

project and why it lost favour.
• List the reasons for the rise of Python.
• Compare the attributes of Python and R.

2

Types of Programming Languages
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

System Languages Architectural Languages Application Languages Statistical Languages

The choice of language category depends on what you want to use it for. Application and statistical
programming languages are useful for quick and dirty ways of looking into data. But it may not be

computationally efficient and may not be suitable for super large datasets.

Here is a functional classification of programming languages:

4

Used when
speed is
critical.

System
Languages

For building
operating
systems,
hardware

drivers, etc.

Examples:
C, C++

Fast and
provides low
level (close to

the core)
access to the

computer.

5

Provides a higher
level of abstraction
that makes writing

software quicker and
more productive.

Architectural
Languages

Build
frameworks that
support (make

easy) application
building.

Examples:
Java, C#

Not as fast (at
run-time) as
system level
languages.

6

Scripting
languages (that

don’t need to be
compiled,) adds to

the ease of use
and speed of
development.

Application
Languages

Good for
connecting to

databases;
interfacing between
user and database
and extremely fast

development.

Examples:
Python, PHP, PERL

Programmers are
freed from the low-

level details (e.g.
memory allocation)

required when
working with

architectural and
system level
languages.

7

Also considered
scripting language
as they also do not

need to be
compiled.

Statistical
Languages

Not considered
as serious

programming
languages.

Examples:
R, Mathematica

Combines ease of
computation with
graphical output.

8

Programming Styles
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Procedural
Programmingvs.

Divide and
Conquer Dynamicvs.

Computer languages may also be classified by
programming mode or style:

Object-Oriented
Programming (OOP)

10

Main

Procedure A Procedure B

Procedure Y Procedure Z

Procedure X

Procedural programming is a traditional mode of programming.

It involves a set of sequential procedures that takes input data, processes it, and produces output
data (hence the name procedural).

It treats data as a completely passive entity.

11

OOP is a programming language model organised around objects rather
than "actions" on data.

It is a “lifelike” entity, encapsulating both data and function/ methods.

In other words, an object is active, not passive; it does things. It
encapsulates its own data. But it can share that data with other objects.

12

• Justin Bieber could
be an object.

• Data:
o Age
o Hair Length
o Location

• Methods:
o Sing, dance, eat

Source: By Lou Stejskal - Flickr, CC BY 2.0,
https://commons.wikimedia.org/w/index.ph
p?curid=48546468

13

Fields:
• Age
• Hair Length
• Location
Methods:
• Sing, dance, eat

Class “Boyfriend” Object “Justin Bieber”

Field data:
• 24
• Medium
• Canada (mostly)
Methods:
• Sing, dance, eat

For example, we use the class “boyfriend” to create the object ”Justin Bieber”.

• Every object belongs to (is an instance of) a class.
• An object may have fields, or variables. The class describes these fields.
• An object may have methods. The class describes these methods.
• A class is like a template, or cookie cutter. Every object is constructed from a class.

14

Classes are arranged in a treelike
structure called a hierarchy.

Every class can be preceded by a superclass (Child  Parent).

Every class can be succeeded by a subclass
(Parent  Child).

15

Justin Bieber is a boyfriend. A boyfriend inherits traits from a friend, who inherits traits from a human.

Justin Bieber

Human

Acquaintance Enemy Friend

Boyfriend Girlfriend

16

OOP is meant to be a natural way of reasoning about data in terms of the attributes that
describes it and the operations that can be performed on it as real world entities.

17

What is BioPerl? History of OOP

• It is a collection of Perl (a scripting
language) modules for processing
data for the life sciences.

• A project made up of biologists,
bioinformaticians and computer
scientists.

• An open source toolkit of building
blocks for life and sciences
applications.

• Refer to the online documentation to
learn about the many powerful things
that BioPerl can do:
http://www.bioperl.org.

• First work was published in
1996.

• BioPerl 1.0 was released in
May 2002.

• Last stable release on 10th July
2014.

• It is a part of the open-bio.org
foundation (BioJava,
BioPython, BioPerl, EMBOSS,
BioMoby).

18

#!/usr/local/bin/perl
use Bio::Seq;
$seq_obj = Bio::Seq -> new(‘-seq’ =>‘acgt’);
print $seq_obj -> seq(), “\n”;

A Bio::Seq object, or "Sequence object", or "Seq object", is found everywhere in BioPerl, it
contains a single sequence and associated attributes e.g. names, identifiers, and properties.

This generic "Sequence object" could be either protein or DNA, and it is not linked to a
particular format, like the SwissProt, the EMBL or the GenBank ones.

This line tells PERL to use a module on your machine called Seq.pm found in the directory Bio.

Specifying the directory that contains PERL interpreter.

The following piece of code prints out  acgt:

19

The PERL variable $seq_obj refers to an instance of the Bio::Seq class.

new is a subroutine found in the module Bio/Seq.pm. The function call Bio::Seq-> acts as
the constructor of the object. ‘-seq’ => ‘acgt’ assign the value to the attribute.

The constructor is a call to create an object from a class.

This line creates a sequence object (in memory):

20

#!/usr/local/bin/perl
use Bio::Seq;
$seq_obj = Bio::Seq -> new(‘-seq’ =>‘acgt’);
print $seq_obj -> seq(), “\n”;

#!/usr/local/bin/perl
use Bio::Seq;
$seq_obj = Bio::Seq -> new(‘-seq’ =>‘acgt’);
print $seq_obj -> seq(), “\n”;

Method Calling

This line prints out what is returned by the method
seq() of the object $seq_obj (which is acgt):

The -> notation means that one specifically intends to call the subroutine seq that is attached
to $seq_obj. Indeed, a different object might have a method named seq, with a possibly
different implementation if it belongs to a different class (polymorphism).

Polymorphism: Two classes can have methods of the same name, but does different things.
For example, the sing method for the object “Adele” belonging to the class “Singer” and the
sing method for the object “Canary” belonging to the class “Bird” are not the same things.

21

Prints out
acgt
dna
gt

The BioPerl documentation tells us that the Bio::Seq object has many other methods,
for example seq, alphabet, subseq.

#!/usr/local/bin/perl
use Bio::Seq;
$seq_obj = Bio::Seq -> new(‘-seq’ =>‘acgt’);
print $seq_obj -> seq(), “\n”;
print $seq_obj -> alphabet(), “\n”;
print $seq_obj -> subseq(3,4), “\n”;

22

But all these seem rather trivial methods for dealing with strings.
Does OOP make it simpler to deal with more advanced applications?

The Bio::SeqIO object is responsible for reading/writing sequence to file. It
provides support for the various database formats. The below script creates a
'sequence' object and saves it to a file named 'test.seq' under FASTA format.
FASTA is a basic file format for representing biological sequence data.

The Bio:SeqIO object has
convenient methods for format
conversion (format) and export
(write_seq). Such operations are
required often, and can be error
prone if we write a new process
each time.

#!/usr/local/bin/perl
use Bio::Seq;
use Bio::SeqIO;
$seq_obj = Bio::Seq -> new(‘-seq’ =>‘acgt’,

‘-id’ =>‘#12345’
‘-desc’ =>‘example 1’);

$seqio_obj = Bio::SeqIO->new(‘-file’=>‘>test.seq’,
‘-format’=>‘fasta’);

$seqio_obj->write_seq($seq_obj);

Saves the file test.seq containing
>#12345 example 1
acgt

23

This is a rather extensive flatfile format. It is not so simple to write programmatically since you need to know all the
fields and their order. It is rather easy to make mistakes.

Fasta is a very simple format and easy to write with code. How about a more complex format? If we replace
'-format' => 'fasta' with '-format' => 'embl' in the Bio::SeqIO constructor, we get:

ID #12345 standard; DNA; UNK; 4BP.
XX
AC unknown;
XX
DE example 1
XX
FH Key Location/Qualifiers
FH
XX
SQ Sequence 4 BP; 1 A; 1 C; 1 G; 1 T; 0 other;

acgt 4
//

24

Procedural Programming OOP

Function 4 Function 5

Function 3

Main Program

Function 1 Function 2

Data Data

Function Function

Function Function

Object Object

25

Procedural Programming OOP

Top-
down
Design Limited

Code
Reuse

Complex
Code

Global
Data

Focused

Object
Focused
Design

Code
Reuse

Complex
Design

Protected
Data

26

The divide and conquer approach takes a complex problem and breaks it down into smaller non-
overlapping components. It usually comprises 3 steps:

Divide:
Break the

given problem
into sub-
problems

(top-down).
Conquer:

Recursively
solve these

sub-problems.

Combine:
Combine the

answers.

1
2

3

27

Dynamic programming is an approach for solving a complex problem by breaking it down into a
collection of simpler but possibly overlapping subproblems. It involves the following steps:

1
2

3
Analyse the

problem and see
how the sub-

problems can be
solved upwards

(bottom up).

Break the given
problem into sub-
problems. Solving

each once and
storing the solution

(bottom up).

Ensure that the
sub-problems are

solved before
solving the
problem.

28

Divide and Conquer

Dynamic

29

Bottom-up algorithms in
which the smallest sub-
problems are explicitly
solved first and the
results of these is used to
construct solutions for
progressively larger sub-
instances.

Stores solutions of sub-
problems, which avoids
repeated calculations for
same problems.

Partitions a problem into
overlapping sub-
problems.

Top-down algorithms
which logically progress
from the initial instance
down to the smallest sub-
instances via intermediate
sub-instances.

Doesn’t store solutions of
sub-problems. Identical
sub-problems may arise,
which results in the same
computations to be
performed repeatedly.

Partitions a problem into
independent smaller sub-
problems.

Divide and Conquer

Dynamic Programming

30

R
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

R is a free software
environment for

statistical
computing and

graphics. Cross-platform.
Available on UNIX,
Windows and Mac

OS X

R is regarded as an
implementation of the
S language which was

developed at Bell
Laboratories by Rick

Becker, John Chambers
and Allan Wilks.

Source for R Logo: By Hadley Wickham and others at RStudio - https://www.r-project.org/logo/, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=35599651 32

Refer to
https://cran.r-
project.org for further
information on R.

It has an effective data
handling and storage
facility.

It has a suite of operators
for calculations on arrays,
in particular matrices.

It is based on a well-
developed, simple
and effective
programming
language (called ‘S’)
which includes
conditionals, loops,
user defined
recursive functions
and input and
output facilities.
(Indeed most of the
system supplied
functions are
themselves written
in the S language.)

It has a large, coherent,
integrated collection of
intermediate tools for
data analysis.

It has graphical facilities
for data analysis and
display either directly at
the computer or on
hardcopy.

It is more than just a
programming language.
It is a chimera.
Sometimes, it is also
referred to as a statistical
language.

It does well in Data
handling, Calculations,
Tool Development,
Graphics and
Programming.

R has an integrated suite
of software facilities for
data manipulation,
calculation and graphical
display.

Why R is well-suited for data science?

33

An overview of how R works:

Source: Paradis, Emmanuel. "R for Beginners" (2002)

functions and operators

“data” objects

“results” objects

…/library/base/
/stast/

/graphics/
…

library of
functions

data
files

internet

PS JPEG …
screen

commandskeyboard
mouse

Active Memory Hard Disk

34

Sylvia Tippmann/Source: Elsevier Scopus Database

35

Source: http://www.nature.com/news/programming-tools-adventures-with-r-1.16609

R allows scientists to compare a human and a Neanderthal genome (using Bioconductor); to model
population growth (IPMpack); predict equity prices (quantmod); and visualise the results in polished
graphics (ggplot2) in a few lines of code.

Experts can use R to write up manuscripts, embedding raw code in them to be run by the reader (knitr).

Nearly 1 in 100 scholarly articles indexed in Elsevier’s Scopus database last year cites R or one of its
packages – and in agricultural and environmental sciences, the share is even higher.

36

gputools

foreach: doMC, doSNOW, doMPI

parallel, Rmpi
Parallel

Lattice, hexbin (Bioconductor), ash
(Bioconductor), scagnostics, bigvis,
igraph, iplots, rgl

Source: http://www.datasciencecentral.com/

R for big data

MASS, Hmisc, plyr,
data.table, reshape2,
ggplot2, caret, party, tm

Rstudio: Rstudio
Server, Shiny Server

Flat text: readLines,
read.table, read.fwf, sqldf

Large and out-of-memory data

HDF5: hdf5, sqldf

SQL: RODBC, Rmysql, RJDBC, ROracle

NoSQL: MongoDB (rmongodb,
Rmongo), CouchDB (R$CouchDB)

JSON: RJSONIO, rjson

XML: XML

Hbase: rhbase (Revolution)

ff, bigmemory,
biglm, biglars, bigrf

RHIPE, rmr, HadoopStreaming,
Revolution Analytics (rhbase, rhdfs)

Rgraphviz (Graphviz),
Rcpp, Rjava, rPython

Teradata (TeradataR), Oracle
(Advanced Analytics), Netezza,

SAP HANA (RHANA)

C API
Rcpp

CRAN

4501 packages

Growth

Packages submitted by year

N
um

be
r o

f p
ac

ka
ge

s

37

Glue

As backend

GPU

In-database analytics

Efficiency

Packages

Basic stack

Integrated platforms

Visualisation

Data formats

Hadoop

Rserve (Python (pyrserve), Web), Python
(ryp2, pyper), Perl (Statistics::user), Web

(FastRWeb, Rserve, Shiny Server), SAS (PROC
IML (version 9.22+), PROC_R macro)

PERL
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

PERL stands for “Practical Extraction and Reporting Language”. It is a general-purpose
programming language originally developed for text manipulation.

It is now used for a wide range of tasks including system administration, web/ GUI
development (under the LAMP framework), network programming, and more.

It is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny,
elegant, minimal).

It supports both procedural and object-oriented (OO) programming.

Its strength is in dealing with text-based data via its regular expression (regex) and text
operators.

39

Biology-specific modules are hosted on BioPerl at http://bioperl.org/.

PERL modules provide a range of features to help you avoid writing everything
yourself. You can download the modules from CPAN http://www.cpan.org/.

40

Early February, 1996

Date

Cambridge, England, in the
conference room of the
largest DNA sequencing

center in Europe.

Source: http://www.tpj.com

Location

A high level meeting
between the computer

scientists of the center and
the largest DNA sequencing
center in the United States.

Occasion

Although the two centers use
almost identical laboratory

techniques, almost identical
databases, and almost identical

data analysis tools, they still
can't interchange data or

meaningfully compare results.

Problem

Practical Extraction and
Reporting Language

Solution

41

Source: https://web.stanford.edu/class/gene211/handouts/How_Perl_HGP.html

Biological data is often incomplete and messy (missing data, duplicates, human mistakes). Regex can be written to
pick up and correct a variety of common errors in data entry. Of course this flexibility can be also be a curse.

PERL encourages people to write their software in small packages of code called modules. Modules can be chained
together using a master program. Chaining also means PERL modules can be used with other language modules e.g.
C. It also makes it easy for people to collaborate.

Can deal with unstructured data e.g. text. During early days of HGP, most primary data is text (DNA sequences).
Interconverting different data formats is simply a matter of extracting the useful bits from text information. PERL
has powerful regex and string manipulation operators.

Modular

Forgiving

Flexible

42

PERL doesn't require you to declare all your function prototypes and data types in advance, new variables spring into
existence as needed, calls to undefined functions only cause an error when the function is needed.

Because PERL is quick and dirty, it often makes sense to prototype new algorithms in PERL before moving them to a
faster compiled language. Sometimes it turns out that PERL is fast enough so that the algorithm doesn't have to be
ported; more frequently one can write a small core of the algorithm in C, compile it as a dynamically loaded module
or external executable, and leave the rest of the application in PERL.

PERL is a good language for Web CGI scripting, and is growing in importance as more labs turn to the Web for
publishing their data.

Fast Prototyping

Simple

Web/Data-based Capabilities

Source: https://web.stanford.edu/class/gene211/handouts/How_Perl_HGP.html
43

Source: https://www.fastcompany.com/3026446/the-fall-of-perl-the-webs-most-promising-language

In bioinformatics, where PERL’s position as the most popular scripting language powered many 1990s breakthroughs
like genetic sequencing, PERL has been supplanted by Python and the statistical language R (a variant of S-plus and
descendent of S, also developed in the 1980s).

Other programming languages (Python, Ruby and even PHP) have matured quite a bit in recent years, and have lots
of libraries (PERL's biggest asset during its "boom period" was CPAN,) and large followings. It has now lost this
advantage.

Too much flexibility can be confusing. PERL’s mantra is “There is more than one way to do it”. PYTHON’s is “There is
one obvious way to do it”. In a day and age where collaboration is essential, which language has more relevance?

Shift in focus from text data to numeric data (PERL’s regex advantage is less needed).

44

https://en.wikipedia.org/wiki/S_(programming_language)

Python
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Refer to:
http://www.python.org

Python is an
interpreted high-

level programming
language for

general-purpose
programming.It is named after

a British comedy
“Monty Python’s

Flying Circus”.

Extensions to
Python made it

data science
compatible.

Chief amongst these
include pandas, SciPy,
NumPy, MatplotLib,

Seaborn.

It is free,
powerful, widely
used and has an

elegant syntax (uses
indents instead
of brackets for

loops).

Google, NASA,
Yahoo,

Electronic Arts,
some UNIX

scripts etc. use
Python.

Biopython is a
set of freely

available tools
for biological
computation

written in
Python.

46

pandas is an open source
library providing high-
performance, easy-to-use
data structures and data
analysis tools for the Python
programming language.

It allows handling
of missing data.

Refer to:
http://pandas.
pydata.org/

It adds data structures
and tools designed to
work with table-like
data (similar to series
and data frames in R).

47

NumPy introduces objects for multidimensional arrays and
matrices, as well as functions that allow to easily perform
advanced mathematical and statistical operations on those
objects.

Many python libraries are built on NumPy.

It provides vectorisation of mathematical operations on
arrays and matrices which significantly improves the
performance.

Refer to: http://www.numpy.org/

48

SciPy (pronounced “Sigh Pie”) is a
Python-based ecosystem of open-source

software for mathematics, science, and engineering.

It is a collection of algorithms for linear algebra,
differential equations, numerical integration,

optimisation, statistics and more.

It is built on NumPy.

Refer to: https://www.scipy.org/scipylib/

49

Matplotlib is a Python 2D plotting library, which produces
publication quality figures in a variety of hardcopy formats.

It offers a set of functionalities similar to those of MATLAB.

Examples: Line plots, Scatter plots, Bar charts, Histograms,
Pie charts etc.

It is relatively low-level and requires effort to create
advanced visualisation.

Refer to: https://matplotlib.org/

50

Seaborn is
based on

Matplotlib.

It provides high
level interface for
drawing attractive

statistical
graphics.

It is similar (in
style) to the

popular ggplot2
library in R.

Refer to:
https://seaborn.

pydata.org/

51

Refer to: http://jupyter.org/

Jupyter is built on top of iPython (an interactive shell
similar to R’s).

It was born in 2014.

It provides interactive data science and scientific
computing across all programming languages (not just

Python).

It is an IDE and combines easy interface between
graphics and code. It can be used to produce

presentations.

52

Refer to: http://biopython.org/

Biopython is a set of freely available tools for
biological computation.

It is similar to BioPerl and provides many mechanisms
for dealing with biological sequences and format
conversions.

It also allows easy connection to databases, e.g.
ExPASy, Entrez, Pubmed, etc.

53

Comparing R and Python
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Feature Which is better?

Python vs. R for Predictive Modelling

Model Building Both are Similar

Model Interpretability R

Production Python

Community Support R

Libraries Both are Similar

Visualisations R

Learning Curve Python

55

Feature Python R
Model Building Both are similar Both are similar
Model Interpretability Not better than R R is better
Production Python is better Not better than Python
Community Support Not better than R R has good community support over

Python
Data Science Libraries Both are similar Both are similar
Data Visualisations Not better than R R has good data visualisation

libraries and tools
Learning Curve Learning Python is easier than

learning R
R has a steep learning curve

56

Summary
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

1. System, Architectural, Application, and Statistical are
the four classifications of programming languages.
The choice of language category depends on what you
want to use it for.

2. R is an integrated suite of software facilities for data
manipulation, calculation and graphical display. It
does well in Data handling, Calculations, Tools,
Graphics and Programming which makes it well-suited
for data science.

3. In bioinformatics, PERL powered many 1990s
breakthroughs like genetic sequencing, it has been
supplanted by Python and the statistical language R.
This along with shift in focus from text data to
numeric data led to the fall of PERL.

4. Python is a general-purpose language, which is designed
to be simple to read and write. The designers placed less
of an emphasis on conventional syntax, which makes it
easier to work with, even for non-programmers or
developers and makes it popular.

5. R and Python are both open-source languages used in a
wide range of data analysis fields. Their main difference is
that R has traditionally been geared towards statistical
analysis, while Python is more generalist. Both comprise a
large collection of packages for specific tasks and have a
growing community that offers support and tutorials
online.

58

The R
Journal

The R Project for
Statistical

Computing

Reading
Resources

Little Book of
R for

Bioinformatics

An introduction
to R

59

https://journal.r-project.org/
https://www.r-project.org/
https://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/
https://cran.r-project.org/doc/manuals/r-release/R-intro.html

Although we will not teach compiled languages.
You may be interested to find out more what it is.

Python is seen as a potential successor to R in
data science. Why is that so?

PERLs particular strength is in text-parsing (due regex), something R is weak in. Find out how regex
works, and why it is useful in biological data analysis. If you like, you can try writing a regex to parse a
GeneBank flatfile.

What is LAMP? Does what it stand for? Who still uses it for web development these days?

60

	Slide Number 1
	Learning Objectives
	Slide Number 3
	Functional Classification of Programming Languages
	System Languages
	Architectural Languages
	Application Languages
	Statistical Languages
	Slide Number 9
	Programming Styles
	Procedural Programming
	Object-Oriented Programming
	A “Justin Bieber” Object
	Objects Inherit from Classes
	Classes Follow a Hierarchy
	Classes Follow a Hierarchy
	But why so complex?
	OOP with BioPerl
	OOP with BioPerl
	OOP with BioPerl
	OOP with BioPerl
	OOP with BioPerl
	OOP with BioPerl
	OOP with BioPerl
	OOP vs. Procedural
	OOP vs. Procedural
	Divide and Conquer Programming
	Dynamic Programming
	Divide and Conquer vs. Dynamic Programming
	Divide and Conquer vs. Dynamic Programming
	Slide Number 31
	What is R?
	R for Data Science
	How R works?
	Popularity of R
	R in the Biosciences
	R is Powerful
	Slide Number 38
	What is PERL?
	PERL Extensions
	How did PERL save the human genome project?
	How did PERL save the human genome project?
	How did PERL save the human genome project?
	The Fall of PERL
	Slide Number 45
	What is Python?
	pandas
	NumPy
	SciPy
	Matplotlib
	Seaborn
	Jupyter
	BioPython
	Slide Number 54
	Python vs. R
	Python vs. R
	Slide Number 57
	Key Takeaways from this Topic
	Readings
	Going Further

