
Fundamentals of Computer
Science and Programming
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

By the end of this topic, you should be able to:
• Define algorithms, heuristics, and computer programmes.
• Explain variables, operations, and control statements in the context of programming logic.
• Describe examples of classical tractable and non-tractable algorithms.
• Describe examples of algorithms in genomics and proteomics.
• Describe the process of problem specification, formulation, and evaluation in programming.

2

What are Algorithms?
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

A proposed/ theoretic
method to problem

solving which is
guaranteed to give an

output for a given input.

4

Step-wiseConceptual

Unambiguous Non-optimality allowed

Some definitions suggest that an algorithm should always produce the correct output.
But it is arguable when “correct” is subjective, especially if there is no way of knowing
if a fully correct answer can ever be achieved. An example being genome sequence
assembly problems.

5

6

Watch the video lecture to view the animation.
Given a set of objects with
defined positions 0 to 3.

We first define a checker
starting at position 0.

Is there is an object to the
right?

Check if the left is lower
than the right.

If 4 is true, then reverse the
order.

Move checker to position 1.

Repeat steps 3 to 6 until
position 3.

Check if objects are sorted. If yes,
stop the algorithm. If no, send
the checker back to position 0
and redo steps 3 onwards.

What are Heuristics?
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

A practical
approach to

problem solving.

8

Could be wrongMust be fast

Abstraction Educated guess

Stereotyping is a form of mental heuristic. While it helps us make snap decisions or
form snap opinions. It can be obviously wrong!

9

In genome assembly, short
sequence reads are iteratively
overlapped to generate a full
assembly. This is a very time-
consuming process (all pair-
wise comparisons required)
and gaps will occur.

Heuristic: instead of purely relying on sequence overlaps, use the structural scaffold of a
related organism to quickly identify the approximate locations of reads such that less
comparisons need to be made.
Pros: Uses homology information; is fast
Cons: May miss critical rearrangement/divergence events during speciation

Assembled genome from organism x

Order Pre-determination such that we only need
to consider position 1 and 2, 2 and 3….

Assembled genome

Assembled genome

1 2 3 4

10

Protein identification using only unique peptides

Known Protein SequencesIdentified peptides

Protein A Protein B Protein C

Sequence that is not supported by an spectra

Parsimony would suggest
that Protein A is confidently
identified whereas we
cannot tell for certain if B or
C exists due to the presence
of ambiguous peptides.
This is a simplifying
assumption since…

11

Protein identification using only unique peptides

Known Protein SequencesIdentified peptides

Protein A Protein B Protein C Protein D

..there can be meaning in
ambiguity. In this case,
although all peptides are
ambiguous, Protein C is
likely present. So
disregarding any peptide
due to ambiguity gives us a
quick set of proteins with
minimal computation but
we lose useful information
consequently.

12

What is Programming?
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Computers cannot solve all problems. They can only help solve well-posed problems.

Programming is the process of commanding the computer to solve problems. It is an elaborate process
which involves:
 Specification: Stating precisely the nature of the problem that needs to be solved
 Formulation: Designing and implementing an appropriate solution
 Evaluation: Check if the solution is appropriate. Are there bugs?

14

Mayor:
I need a way to

cross from A to B,
and I think a

bridge is the best
solution

Architect and
Engineer:

We designed and
built a bridge

This process is not so different from carrying out a project.

Specification

Formulation

Evaluation
Auditor and Reviewer:

Is the bridge truly
linking A and B?

Is the bridge stable?
Is the bridge truly the

best solution?

15

Automation
of repetitive

tasks.

Dealing with
large amounts
of information.

Create new
solutions to
problems.

Generation of
meaningful

summaries and
insight.

Sharpen
thinking
process.

Awareness, such
as not using

‘blackboxes’ with
limited

understanding.

Why should a
data scientist

care about
programming?

16

Examples:

The problem must be stated as specific as possible so that an appropriate formulation (solution) can be designed.

Does gene A cause disease X?

I need to compare two sequences to find out how similar they are.

I need a smart program that can select the best statistical test given my data.

17

Algorithm Program

Implementation/
Expression

An algorithm is an
ordered series of
steps for problem

solving.

It should be exact
and unambiguous.

It can be
expressed by a
programming

language (where it
becomes a
program).

18

01
Is the solution
good enough?

02
Is the solution

correct?

03
Is the solution

efficient?

04
Do we

suspect bugs
in the code?

After we write the
program and run the

analysis, we should not
stop there. We must
always ask ourselves:

19

Not all proposed
solutions solve the

problem.

An imperfect
solution may lead

to the correct
outcome but takes

a long time.

A wrong solution
creates errors.

20

Variables, Operations and
Control Statements
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

Algorithms can be written in “English” but we do need some degree of precision
and consistency.

Some standard elements – variables, operations and control statements – are
required.

22

Algorithms use variables to input and output data and compute and store data.

A variable can be local or global. Variables are simple (one variable; one
value). More sophisticated structures
exist for complex or multi-dimensional
data (data structures).

String, numeric, binary, logical are types
of variables.

23

A variable is a
container that can
be filled with data.

Create an empty
container.

A = ()
#nothing in it

Fill up the container with some
data using an assignment.

A = 5
#now the variable A stores the value 5

Output from this variable can be
received in several ways. A simple

way to output is to print it.

print(A)
#output the value of A

24

Variables can take many forms:

String Numeric Binary Logical

Example:
Alice, Paul,

Wilson

Example:
10, 100, 1000

Example:
True or False

Example:
1 or 0

25

A function is an autonomous segment of code
that performs a specific role; its internal
processes are kept separate from the rest of
the program.

Global
Variables can be made accessible to any part of the
program.

Local
Variables are only made accessible to a fixed part of
the program.

Global
Variables

Local
Variables

Local
Variables

Function A Function B

Accessible
only by
Function A

Accessible
only by

Function B

Accessible by
any function

26

An operation evaluates a line of code to see if it meets some condition. If the
condition is met, then it is true. If the condition is not met, then it is false.

The most common operations are if and else.

27

If and Else
if (condition)
then (Step A)
else (Step B)

endif

If
if (condition)
then (Step A)

endif

condition?

Step B

true false

Step A

Endif is used to end the if condition

Leong HW, SOC, NUS

if and else conditional statement is used to take different actions based on a condition.

28

Let mark be the total-mark obtained
if (mark < 40)
then (print “Student fail”)
else (print “Student pass”)

endif
…

read in mark (*from a list*)
if (mark < 40) then (Grade  “F”)
else if (mark < 50) then (Grade  “D”)
else if (mark < 60) then (Grade  “C”)
else if (mark < 70) then (Grade  “B”)
else if (mark < 80) then (Grade  “A”);

endif
print “Student grade is”, Grade
…

A simple example:

if else
statements
can be
chained

Leong HW, SOC, NUS
29

Until some condition is met

Otherwise, it will run for eternity or until the computer crashes

Control statements allow us to repeat a block of code many times over:

The most common control statements are For and While loops.

30

condition?

Some sequence
of statements;

true

false

The while-loop control statement loops a “variable” number of
times.

while (condition) do
(some sequence
of statements)

endwhile

If the statement that has been evaluated in the previous round
is true (ith-1), continue round i.
What do you think will happen if the statement is never false?

Leong HW, SOC, NUS

31

j  a;

(j <= b)?

Some sequence
of statements;

j  j+1;

false

true

The for-loop control statement loops a specific or pre-
determined number of times.

for j  a to b do
(some sequence
of statements)

endfor

After the bth round, the program will terminate
Leong HW, SOC, NUS

32

for j  1 to 4 do
print 2*j;

endfor
print “--- Done ---”

Output:
2
4
6
8

--- Done ---

j  1;
while (j <= 4) do
print 2*j;
j  j + 1;

endwhile
print “--- Done ---”

Output:
2
4
6
8

--- Done ---

Leong HW, SOC, NUS

33

MysteryAlgo(a, b, c)
if a > b

if b > c
return c

else
return b

else
if a < c

return a
else

return c

• Now that you know what it does,
can you think of a smarter way of
rewriting this?

• Hint: Recall the “else if”
statements in earlier example.

• Hint: Also, you may chain several
evaluation statements together
using “And” statements.

34

MysteryAlgo(a, b, c)

if a > c and b > c

return c

else if a > b and c > b

return b

else return a

MysteryAlgo(a, b, c)

if a > b

if b > c

return c

else

return b

else

if a < c

return a

else

return c

Shorter version

Computer code for identifying the minimum given a set of numbers:

Longer version

35

Let’s go through the
steps and work out how
to implement this.

The Hamming Code earned Richard Hamming the Eduard Rheim Award of
Achievement in Technology in 1996, two years before his death. Hamming's
additions to information technology have been used in innovations, such as
modems and compact discs.

Specifically, Hamming's formulas allow computers to detect and
correct errors on their own.

It is a small portion of a broader set of formulas used in
information analysis.

Hamming Distance is a number used to denote the difference
between two binary strings.

36

Ensure the two
strings are of equal

length. The Hamming
distance can only be
calculated between
two strings of equal

length.

Compare the first
bits in each string. If
they are the same,

record a "0" for that
bit. If they are

different, record a
"1" for that bit.

Compare each bit in
succession and

record either "1" or
"0" as appropriate.

Add all the ones
and zeros in the

record together to
obtain the

Hamming distance.

1

2

3

4
Hint: You can move from one part of the string to another part by
indexing its position from 1 to n, where n is the length of the string 37

1

2

3

4

String 1: "1001 0010 1101”
String 2: "1010 0010 0010"

First bit of both strings: "1”
Record: "0" for the first bit

String 1: "1001 0010 1101”
String 2: "1010 0010 0010”
Record: "0011 0000 1111"

Hamming distance:
0+0+1+1+0+0+0+0+1+1+

1+1 = 6

38

begin
let A be string 1
let B be string 2
let hamming be 0

if length of A is equal to length of B
for x from position 1 to position n equals to the length of A

if position x in A equals position x in B
hamming = hamming + 0

else
hamming = hamming + 1

else
exit

return hamming
exit
end

39

Sequence 1: G A G C C T A C T A A C G G G A T

Sequence 2: C A T C G T A A T G A C G G C C T

The Hamming distance compares two strings for differences.

It can also be used in biology. Consider the following example involving 2 DNA sequences:

The Hamming distance is 7 out of 17 positions. So we may say that this pair of DNA sequences are not very similar.

40

Pseudocode
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

All different
programming languages
use different syntax but

there are common
elements such as

operators, variables and
control elements.

The programmer will
then follow the recipe

and convert the
pseudocode into a

program (think of the
programmer as a cook).

There is a more relaxed
method of code logic

expression 
Pseudocode.

What if a Python
programmer wants to
share ideas for a code

with a fellow R
programmer. Can they still

understand each other?

Pseudocode is a series of
instructions (statements)

written in English that tells
the programmer what to do
(in a more human language)

(it is like a rather loose
recipe).

42

begin
statement 1;
...
statement n;
end

The begin and end are
optional – just to make
things REALLY obvious.

Pseudocode is “almost” code, but not quite. It needs to be properly encoded in specific syntax to become a
program.

Algorithms in pseudocode will almost always take the below form:

43

Leong HW, SOC, NUS

Arrange all the integers in a list in decreasing order;
MAX = first number in the list;
Print out MAX;

What is the largest integer?
INPUT: All the integers { … -2, -1, 0, 1, 2, … }
OUTPUT: The largest integer

Formulation:

Specification:

A very loose way of expressing pseudocode:

44

Objective:
To identify the protein based on
its mass peaks (this is effectively
a pattern matching problem).

Corresponding Pseudocode

Peptide Mass Fingerprinting

Get the experimental mass list L
For each sequence s in the database do

digest s and obtain a set of peptides P
for each peptide p in P do

compute mass (p)
Push mass (p) in M

x <- score(M,L)
store score x for protein s

Compute p-values for each score
Return the n best proteins /* highest score or lowest p-value */

A more specific way of expressing pseudocode:

45

Summary
BS3033 Data Science for Biologists

Dr Wilson Goh
School of Biological Sciences

An algorithm is
conceptual.

A pseudocode is
written in plain

English to express
the algorithm. It is

human readable but
less exact.

Conversion of the pseudocode or algorithm into the formal instructions (syntax) used in
a programming language is a Program. It has machine readable instruction (very exact).

47

	Slide Number 1
	Learning Objectives
	Slide Number 3
	Algorithm
	Algorithm
	Algorithms in Action
	Slide Number 7
	Heuristics
	Heuristics
	Examples of Heuristics (Genome Assembly)
	Examples of Heuristics (Proteome Identification)
	Examples of Heuristics (Proteome Identification)
	Slide Number 13
	What is Programming?
	Specification, Formulation, and Evaluation (Simple Example)
	Programming and Data Science
	Specification Exemplifies the Problem
	Formulation is Achieved via Algorithms
	Evaluation
	Evaluation
	Slide Number 21
	Variables, Operations, and Control Statements
	Variables
	Variables
	Variables
	Variables
	Operations
	Operations (if and else)
	Operations (if and else)
	Control Statements
	Control Statements (while-loop)
	Control Statements (for-loop)
	Control Statements (for and while)
	Putting it together: Can you guess what this algorithm does?
	Putting it together: Can you guess what this algorithm does?
	Putting it Together: The Hamming Distance
	Putting it Together: The Hamming Distance
	Putting it Together: The Hamming Distance
	Putting it Together: The Hamming Distance
	Case Study: The Hamming Distance
	Slide Number 41
	Pseudocode Comes to the Rescue
	Representing Algorithms: Pseudocode
	Expressing Pseudocode
	Expressing Pseudocode
	Slide Number 46
	Key Takeaways from this Topic

