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Learning objectives

e Describe the various factors affecting PSM
quality
e Describe p-values, FDR and PEP

e Describe and evaluate the various decoy library
generation strategies (sequence reversal,
seguence randomization) for FDR estimation

e Describe coverage and consistency issues in
proteomics




Using Proteomics in practical applications

Technology-dependent Technology-independent

a) peptide and protein

identification from PSMs c) peptide significance analysis e) class discovery g) data integration
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Statistics plays key roles in both areas
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Overview of proteo-informatics

4 ) ]

Search algorithm Storage/Dissemination

Statistical validation
of peptide and o
protein Quantitation
identifications

Mass spectrometry

De novo sequencing

K ) Functional Analysis

Data storage/
representation
formats

Peptide-spectra matching Functional analysis
(PSM)
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What is PSM?

e PSM stands for Peptide-Spectra Match

e [t |s a pairing of sequence with spectra

® You’'ve seen this earlier when we
considered library search algorithms

e Earlier we showed a simple scenario
where there is only one possible
seguence match per spectra

e But in practice




What determines whether or not we
get a good PSM?

e Search parameters

e | brary quality and size

e Spectra quality

e Algorithm scoring method
e Statistical evaluation




Search parameters

e Precursor mass tolerance (PMT)
* Fragment mass tolerance (FMT)
e Post-translational modification (PTM)

intensity
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Precursor mass tolerance (PMT)

e PMT deals with MS1 (peptide level)

PMT 1 Da PMT is usually specified in
terms of daltons

<
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intensity
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m/z
Sequence library |
Peptide A
Peptide B l
Peptide C l
PMT 2 Da PMT 3 Da
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What happens when the PMT window size is increased? IECHNOL S




Fragment mass tolerance (FMT)
e FMT deals with MS2 (identification level)

MS1

sity

|

Sequence library

Peptide A

Peptide B

Peptide C

Which looks like the correct answer?
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Post-translational modification (PTM)

e Some peptide sequences undergo chemical modifications
resulting in mass shifts

e |fthe PTMs are not specified in the search space, then the
corresponding PSM may not be detectable

+PTM MS2 +PTM
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Some fragments will contain the PTM in MS2 e e o




Search space

e The set of candidate peptides to be considered for potential
match to spectra

e \Without PTMSs, the search space is simply the set of peptides

e \With PTMSs, the search space effectively doubles for every PTM to
be considered.
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Examples of typical PTMs

e Phosphorylation e Succinylation
e Ubiquitination o SUMOylation
e O-GIcNAcylation e Citrullination

e Methylation
e Acetylation

Some 260 000 PTM sites that have been identified in the human proteome thus far, but
only a few have been assigned to key regulatory and/or other biological roles!

It is difficult to pin-point exact locations of PTMs as well. And
incorporating all possibilities (where there is only 1 or few
right matches)... can lead to high false positive rates (we will
see how later).

NANYANG

TECHNOLOGICAL
UNIVERSITY




Library quality and size

e UniProt sequence library has 2
databases

— SwissProt (manually curated and reviewed) -
> 500K sequences

— TrEMBL (Automatic annotation, no review) -
> 90M sequences
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Consider this scenario

b=~ an

MS/MS spectrﬁ

Intensity

|1 III‘II‘II I‘Illll IHH I‘IIII:
Mass

0
Potential match 1 | | |
Potential match 2 | I | |
Potential match 3 | | | | |

What are potential explanations for 1, 2 and 37



Spectra Quality

Incomplete fragmentation Mixed signals

Low-resolving time.
Low-resolution instrument

MS1

Spectra from various
MS1 s s proteins are mixed together

Lack resolving Fully informative >
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Statistical testing

The elements of null hypothesis statistical testing
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The PSM is not a true match
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83 Statistical test
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The PSM is not a true
match

&

Null condition retained

e

Null rejected. So the PSM
is likely a true match

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology 2018
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Possible outcomes from a statistical

test
4 Possible outcomes Predicted as
Happy Unhappy
(Irrelevant) (Relevant)

v

True Negative False Positive

A© @

Happy
(Irrelevant)

Reality

Unhappy
(Relevant)

False Negative True Positive BEE NANVANG
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How to remember?

Type I error Type II error Do you recall type | and Il
(false positive) (false negative) statistical errors?
E‘ [You’re not |
: 2% pregnant | Tynho |- Reject the null when

ANy,
it the null is true

Type ll: Fail to reject the null

when the null is not true

,, You’re
|_pregnant

=50

0T 0 & 5 e -
JANRTITREO e o r

vy You’re not

rggpant

#
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Possible outcomes given the PSMs

The PSM is... Predicted as

CORRECT WRONG

CORRECT

BUT IN
Reality..

WRONG
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Imagine we do this for every spectra...



Recall, Precision and the F-score

relevant elements

false negatives true negatives

©oq © O o

true positives false positives

selected elements

e.g. let’s say we set a p-value cutoff of 0.05

How many relevant
items are selected?

How many selected
items are relevant?

Precision = —— Recall = —

Precision: Of the selected feature,
How many are correct?

Recall: Of the selected feature,
What is the proportion of all the correct
ones we got?

Precision and recall can be combined as:
precision - recall
Fr=2-

precision + recall
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sensitivity or True positive rate




Precision and recall works against
each other
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The Receiver Operator Characteristic
(ROC) curve

ROC curve
100% -
+ | -
80% -
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£ 60% -
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1 - specificity (FPR)
ficity — number of true negatives
Speciicity = number of true negatives + number of false positives gl NANYANG
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Can you write down the formula for FPR yourself?



The Area Under Curve (AUC)

More rightfully called AUROC (Area under the ROC curve)

Receiver operating characteristic example

= The blue area

| corresponds to
0.8} N the AUROC. The
dashed line in
the diagonal is
expected
performance due
to random
chance (so we

0.2 have to be better
than chance)

0.6}

(1-0.6)*1=
0.4

True Positive Rate

0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Totalarea=1x1=1

Half area under the diagonal = %2 = 0.5

One simple way to get the AUROC is to simply calculate the area
using simple length x breadth. But of course one may use calculus.
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The False Discovery Rate

The FDR relates to the proportion of errors
amongst predictions. It is equals to 1 - precision

False Discovery rate = 162 significant 18 significant -
FP/(FP+TP) P P
180 20
mapped 18 non- mapped 2 non-
significant - FN significant - FN
200 200
sequences 1 significant - sequences ~—a 9 significant -
20 not FP 180 not FP
mapped mapped
19 non- 171 non-
significant - TN significant - TN
1/163 9/27=1/3

The FDR is sensitive to the proportion of true features
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How to get all the good quality matches?

What if we iust use our eve power?
PSM quality score Can do it by eye?

35000

10000

Accepted peptide-spectrum matches

30000 |

25000

20000

15000}

5000

KB@ a threshold score,

for accepting PSMs

PSM Score

Statistics provides a more objective manner of evaluation
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Statistics help us determine the best
match

e pD-values
e [False Discovery Rate (FDR)
e Posterior Error Probability (PEP)




The p-value

We can set up our PSMs as a statistical test (based on the following hypothesis statements)

HO: A PSM is incorrect H1: A PSM is correct

We may reject the null hypothesis with a certain degree of error:
Type |: Falsely reject the null hypothesis (False positive)
Type II: Falsely accept the null hypothesis (False negative)

E.g. p value = 0.02

Null distribution This can be taken to mean that 2%

based on false

>
-'5; matches of null have a value equal or more extreme
S than the observed
O In proteomics, this can be taken to mean
> that 2% of all incorrect PSMs have an
= equal or better quality score
@)
3
o The score corresponding
o to our PSM
of interest

PSM score

The probability of obtaining an equal or more extreme result,
assuming the null hypothesis is true (Type | error) B NANYANG
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The p-value

e \Ve are comparing the observed score against a
distribution of “null scores”

e [he null distribution are comprised of the natural
distribution of values when there is no signal i.e.,
when a PSM is incorrect (or the null statement is
true)

e \Vhy does this make sense”

e Because under this setup, a small p-value would
imply that the observed PSM score is very
significant (unlikely to arise due to chance).
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The p-value

e For each hypothesis tested. Suppose we use a
statistical cutoff at 0.01, we should therefore
expect 11N 100 times the result is a false
positive

e Suppose 100 tests are performed, then we
should expect 100 * 0.01 = 1 false positive

e [0 control for this, a multiple test correction
can be used. For example, to maintain 0.01
FPs given 100 tests, the cutoff can be reduced
from 0.01 to 0.01/100 = 0.0001

NANYANGL
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The p-value (in proteomics)

¢ |s alocal measure, meaning that it is confined specifically to the
particular PSM under consideration (it is therefore self-contained)

e Global measures on the other hand, considers all PSMs scores
concurrently and relative to each other (they are therefore not self-
contained).

e | ets say we observe a PSM with a score of 1, we can build an
empirical reference distribution of similar false/random sequences
and find out what are their respective PSM scores. If the observed
PSM does better than at least some alpha threshold, then we can
say that this PSM is statistically significant, and so we reject the
null hypothesis for the alternative.

e This is computationally very intensive. ALSO... what is a
reasonable null?

R NANYANG
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False Discovery Rate (FDR)

False Discovery Rate (FDR): The expected fraction of false positives
among the significant test statistics. (FP/FP+TP)
Compare this against the false positive rate which is FP/(FP+TN)

score type

7.5
7.2
6.9
6.8
6.7
6.5
6.4
6.4
6.3
6.
6.0
5.9
5.7

Benjamini & Hochberg, JSTOR, 1995; Storey & Tibshirani, PNAS, 2003

shold

So how do we look at this?
Let’'s say we have a set of PSM scores and decide to
draw the line at 6, i.e., we accept all PSMs with scores >
6.
Let’s also assume we have perfect knowledge of correct
and wrong matches.
We note that 10 PSMs are retained.
Of these, 2 are wrong. So the FDR is therefore

FDR =2/10 = 20% = 0.2

This seems great. But in reality, we
don’t know which ones are wrong.
This is similar to the null problem in p-

value generation. So how do we create

something which we know to be wrong
or sure? T NANYANG
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False Discovery Rate (FDR)

The target-decoy analysis

Estimating FDR:
How to purposely create your incorrect PSMs

Target Decoy
database database

Target database
Protein sequences of the studied organism.

Decoy database
Reversed or shuffled sequences.

Assumption

Spectra matched to the decoy database are good

models of incorrect matches to the target database.
igigEgd NANYANG
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In other words, all matches to decoy are false positives



False Discovery Rate (FDR)

The target-decoy analysis

Spectra Separated or PSMs
combined

Spectrum Peptide Score

||H|||>

i .

1 Target
‘ H — » database — »
AN |

Spectrum Peptide

1 |\.>

Elias and Gygi. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. Methods Mol Biol. 2010.

¥ Decoy
> database

e NAINYANGU
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False Discovery Rate (FDR)

Target-decoy searching steps

e (Construct a concatenated target-
decoy sequence list, marking
decoy sequences with a text flag in
their annotation.

e Use a MS/MS search engine to
interpret input MS/MS spectra
using target-decoy sequence list.

e Evaluate the relative proportion of
target and decoy sequences in the
search space to derive the
multiplicative factor required to
estimate false positives, if
necessary.

e [Estimate false positive-related
statistics.

e Use decoy hits to guide the
establishment of filtering criteria.

e Report statistics for filtered data
set.

Decoy construction rules

Similar amino acid
distributions as target protein
sequences.

Similar protein length
distribution as target protein
seqguence list.

Similar numbers of proteins
as target protein list.

Similar numbers of predicted
peptides as target protein
list.

No predicted peptides in
common between target and

decoy sequence lists.
il NANYANG
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False Discovery Rate (FDR)

Advantages Advantages Advantages

Disadvantages

Disadvantages

Disadvantages
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FDR estimation based on decoy

No decoy With decoy

decoy PSMs target PSMs
\ l

B =2 3 !
> FDR= — @ !
c A & ; FDR= B To B
S £ i AT A
4 E
:

Score \ \
BV

TTo is the fraction of incorrect target PSMs among target PSMs
Target-decoy analysis

Combined searches _
Target and decoy database are searched togethel 2 Fope Bo T B
> A A
FDR = {#decoys over threshold} / g
o Ni
{#targets over threshold} =N
Score
N;
I e. 7-[0 IS 1 TTo is the fraction of incorrect target PSMs among r PST\SIANYANG
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Posterior Error Probability (PEP)

Posterior Error Probability (PEP): The probability that the null hypothesis is true
for a particular test statistic

In proteomics, it can be taken to mean the probability that a given PSM is wrong.
PEP is sometimes called “local FDR”

observed PSMs

incorrect PSMs \ correct PSMs

\

Frequency

bl N

b
Score X PEP= —

<€

N NN {ANG
A PEP is the probability that a PSM scoring x is incorrect UNIVERSITY



Statistical evaluation: when to use what?

P-value FDR/q value PEP
In experiments Forthe For the
with one, or very confidence in confidence in a
few, spectra sets, of PSMs, particular PSM,
peptlcltles or peptide or
proteins proteins
Optimal
Conservative l Anti-conservative
- & \ ¢ & >
Bonferroni Posterior False Unadjusted
adjusted error discovery rate p—value
p—value probability or g—value

Figure 3. Methods for assigning statistical significance
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Kall et al. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. JPR, 2008



Overview of proteo-informatics

4 ) ]

Search algorithm Storage/Dissemination

Statistical validation

of peptide and protein Quantitation

Mass spectrometry identifications

De novo sequencing

K ) Functional Analysis

Data storage/
representation
formats

Peptide-spectra matching Functional analysis
(PSM)
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Functional analysis 1 (Comparative
analysis)

® [he process of creating knowledge and
Insight from biological data

e Comparative analysis (group A vs B)

— Assumption: the differences between two
groups are phenotypically relevant and can
be used to construct mechanistic
explanation

— This Is a fallacious assumption.

NANYAN(E
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The Anna Karenina Principle

e Happy families are all alike, every
unhappy family is unhappy In its own way
--- Leo Tolstoy

e [nterpreted as: There are many ways to
violate the null hypothesis, but only one
way that is pertinent to the outcome of
INnterest




Happiness does not come easy
9 9

Lack of $ No leisure time

&) &)

No communication Awful in-laws

&) &

Happiness requires positive
fulfilment of all possible
categories. Failure in any leads to
unhappiness

Scandals Incompatibility

NANYANG

TECHNOLOGICAL
UNIVERSITY

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology, 2018



Anna Karenina in comparative
proteomics

False Dichotomy
Null: Gene does not cause disease
Alternative: Gene causes disease

Tuesday

e of gene

|
|
< :
|
|

Abundanc

|

Wrong test construction

Batch effect

Observed _Theoretical

Frequency

—p

Change
Gene A

Wrong null distribution

Normal
The gene is relevant

>

§ O?(:% @Draw 1
S| o000 @ @®Draw 2
(N

0000080 ® -

True cause

X= —l>© Phenotype

B is reported but is merely correlated to A

Chance association

Non-causal association

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology, 2018
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Dealing with the Anna Karenina

Causes

e A careless null/alternative hypothesis due to forgotten
assumptions:

— Distributions of the feature of interest in the two samples
are identical to the two corresponding populations

— Features not of interest are equalized/controlled for in
the two samples

— No other explanation for the significance of the test
— Null distribution models the real world

e [hese make it easy to reject the carelessly stated null
hypothesis and accept an incorrect alternative hypothesis.

NANYANG
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Dealing with the Anna Karenina

Good Practices to Avoid Wrong Conclusions and Get Deeper Insight

e (Check for sampling bias:

— Are the distributions of the feature of interest in the two samples same as that
in the two populations?

e (Check for exceptions:
— Are there large subpopulations for which the test outcome is opposite?

— Are there large subpopulations for which the test outcome
becomes much more significant?

e (Check for validity of the null distribution:

— |s there evidence that suggests the null distribution is inappropriate?

e (Check the hypothesis statement construction

— Are the hypothesis statements being framed correctly (as opposed to a
statement that is prone to being rejected for the wrong reasons)?

R NANYANG
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Dealing with the Anna Karenina

Good Practices to Avoid Wrong Conclusions and Get Deeper Insight

e (Check your assumptions

— Are the right assumptions being made (e.g. the independence of
measured variables)?

e (Check if appropriate summary statistics are used

— If an event is extremely rare, then using mean/median-based
statistics will miss it; ditto if many similar events are present, but only
one is relevant

e Note: Even if all (or most) of the above points
are addressed, it still does not ensure
phenotypic relevance, only correlation.

NANYANG
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Proteins

Functional analysis 2 (Missing
proteins)

Samples
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16 Q99714 HSD17B10 175372.7444 114480.8 181096.8 75400.28 222387.2 91466.47 218888 269679.7 179177.4 165285.9 202618.2 117389.5 191537 4113521 196208.5 151044.7 210269.6 294964.3 183893 82644.38 1799819 102286.8 233372.9 91325.89 196996.8 293727.3 174540.8
17 Q15833 STXBP2 14224.84722 24264.99 14303.05 19690.86 16316.33 NA 1804.538 NA 14303.05 17309.98 11459.84 14224.85 12617.18 NA 14224.85 9837.458 21131.38 5634.228 13283.71 28846.59 20057.06 12924.71 17380.49 NA 2064.747 11880.63 13166.66
18 P08195 SLC3A2  50797.625 42825.82 63302.14 26628.24 85345.18 NA 1804.538 77850.47" A 100616, A .02 NA| 1g\6 1714¢ NA NA 80199.58 41362.6 72273.86 32198.97 75858.83 NA 2064.747 NA 76292.57
19 P26038 MSN 333342.6833 438752.3 421056.2 381249.5 241992.3 404349.8 164343.5 17. tléeﬁ77a i:l tZF%&:SI | 24 3?390317.5 244865.7 273261.7 446678.9 404349.8 306071.8 222387.2 423963.5 191537 182241.6 441856.5
20| P09104  ENO2 NA 144058.2 NA  184650.5 NA  137596.7 126146.3 21851. A N 0.3 N, 3498 A 3.8 57080.76  NA NA 1515589 NA  181096.8 NA  123793.9 2064.747 NA NA
21| P07148 FABP1  1219163.714 34579.48 861796.3 NA 940142 NA 1804538 NA 1130692 NA 1057986 NA 7894461 NA 221565 NA NA NA 1162786 32336.43 8051284 NA  970053.3 NA  2064.747 NA 1300718
22| Q96Q11 TRNT1 NA NA NA NA NA NA 1804.538 NA NA NA NA NA NA NA NA NA 37098.09 35565.03 NA NA NA NA NA NA 2064.747 NA NA
23 015083 ERC2 NA NA NA 85740.42 NA NA 1804.538 NA 83390.33 NA NA NA NA NA NA 142306.8 NA NA NA NA NA 72396.48 NA NA 2064.747 NA 70213.43
24| Q15911  ZFHX3 NA NA 178745.3 393512.7 205865.1 682653.9 1804.538 NA 243050.1 NA 189860.5 NA NA NA NA 457756.2 NA NA NA NA NA NA NA NA 2064.747 NA 252846.2
25| Q9BURS APOO  35479.70278  NA  27260.11 15459.06 40140.37 NA  1804.538 46154.89 30730.15 54737.36 47185.33 13642.38 28517.17 NA  40140.37 NA NA  10649.17 344362 NA  36956.08 16653.18 47858.24 ~ NA  2064.747 33003.64 20057.06
26| Q9UJB3 HACL1 417999.9306 ~ NA 4352484  NA  336790.8 227161.7 1804.538 174111.8 276628.6 ~NA  274264.6 ~ NA  317227.1 2719204 336790.8  NA NA  372485.6 446678.9 NA  390317.5 NA 307205 211073.8 2064.747 169817.6 3333427
27 Q8WUM4 PDCD6IP 50008.50556 34991.44 70504.27 50108.55 59047.33 41611.18 84319.78 97140.59 56715.96 134561.7 52110.31 61553.77 67555.47 65262.99 68597.03 59827.38 73200.35 75049.44 64108.37 40359.89 70903.29 49636.31 49821.32 37258.59 76579.02 76685.11 37386.23
28 P53597 SUCLG1 387432.1583 99433.59 228946.3 94932.09 310472.5 150524.5 187002.3 299487.5 275420.7 308775.7 299487.5 101732.7 245595.9 108554.7 270810.9 89524.72 192915.6 276628.6 357417.6 96737.9 205171.6 95793.82 288001.8 162300.5 193664.8 299487.5 245595.3
29 000186 STXBP3 NA 28468.21 NA NA NA 19019.68 1804.538 NA NA NA NA 21949.83 NA NA NA NA NA NA 15575.29 29005.53 NA NA NA NA 2064.747 NA NA
E Q8N335 GPDIL 5241571111  NA  59328.51  NA  54240.61 21949.83 109838.9 91466.47 45427.61 109273.7 50443.03 ~NA 5270048 22321.01 45502.32 NA  57623.34 41362.6 54737.36  NA 62330.69' NA | 54339 23827.06 152627.3 71658.52 4963631
31| P08621 SNRNP70  48594.65 51791.05 47269.07 86082.28 44306.32 53026.19 1804.538 NA 594321 54839 49636.31 60605.33 52477.21  NA NA  72977.35 74546.25 82242.07 33003.64 60605.33 49636.31 93224.91 NA  56917.54 2064.747 NA  50797.63
32 Q969V6  MKL1 NA 91325.89 55954.92 NA 74269.09 80102.57 1804.538 NA 71906.43 NA NA 152627.3 72497.5 72497.5 89662.88 51690.71 68707.95 41576.85 72021.55 92973.8 NA NA NA 88904.66 2064.747 NA NA
33| P08311 CTSG NA NA 46154.89 NA NA 67879.78 1804.538 NA 53026.19 NA NA 68927.99 NA NA NA NA 218057.1 78414.15 NA NA 46895.88 NA NA 56514.53 66379.24 NA NA
34 QSUKU7 ACADS 46053.91944 31797.32 50179.16 NA 64601.65 NA 75160.02 49228.15 44010.16 28070.84 41974.24 NA 41840.21 NA 42678.39 NA 24335.52 32270.84 46053.92 NA 49467.07 NA 61900.08 NA 2064.747 46053.92 44605.86
35| Q86X76  NIT1  75613.88611  NA  61068.98 63988.55 80199.58 69590.71 1804.538 55745.15 70389.43 NA  84009.8 75506.47 78547.77 84980.21 76153.19 ~ NA  57523.94 40935.27 70713.02 NA  59540.84 70713.02 78753.85 73278.36 55745.15 58932 52415.71
36 P05162 LGALS2 334918 NA  35565.03 NA  52415.71 36825.06 1804.538 23560.07 18592.77 ~NA  36763.92 72761.18 35479.7 50008.51 24907.94 NA  16653.13 22730.31 34916.06 NA  30730.15 NA  32815.68 71139.86 2064.747 NA  25737.06
37 P23946 CMAL NA NA NA NA NA NA 1804.538 NA NA NA NA NA NA NA NA NA 61155.07 14049.16 NA NA NA NA NA NA 53240.82 NA NA
38 | P01834 IGKC  462133.8694 885197.1 6923325 484624 296507.9 462133.9 1219164 319228.4 659554.4 351190.2 312295.6 524995.4 566103.9 692332.5 325019.6 494067.2 286640.3 263299.1 493422.8 1130692 706520.3 469971.2 322906.2 438752.3 913960 310472.5 643593
39 | P14868 DARS  12567.36389 110112 54554.37 136875.9 30209.1 121022.2 1804.538 114195.5 43350.86 95493.71 29430.84 182241.6 61667.11 201171.9 81193.99 2478715 161420 94484.9 76929.26 114678.3 54839 177772 50108.55 141996.6 2064.747 95951.08 53026.13
40 Q9H773 DCTPP1 NA NA NA NA NA NA  1804.538 4630349 NA 1158948 NA  27509.79 NA NA NA 2631417 87070.11 74656.33  NA NA NA NA NA NA 2064747 2225111 NA ¥
W 4> W] sTable3 ~legend ¥ < [ | >

Cannot do analysis properly with such data
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Missing proteins

* Any gene seguence whose respective
protein has never been observed Is an
MP.

e Alongside various initiatives---e.g.
GPMDB, PeptideAtlas and nextProt ---
the goal is to establish a genome-
proteome bridge.




Missing proteins (Tiers 1 to 5)

PE | Inclusion criteria Percentage of proteome | Notes
Tier against 20,055 proteins

. Evidence at proteome level ~ ~82.0% (16,518) *At least 2 unique non-overlapped

peptides at least 9 amino acid
residues long

Evidence at transcript level ~11.5% (2,290) *The transcript must be confidently

only detected, but no corresponding
protein evidence

Homology inference only ~3.0% (565) “Inferred homologues without protein
or transcript support

Predicted ~0.5% (94) “Predicted coding sequence, without
homology, transcript or protein
support

Dubious ~3.0% (588) “The sequence may not fully meet
the criteria for a predicted coding
sequence
*Uncertainty over the veracity of the
coding sequence (i.e., we do not
know the sequence is correct)
*Some studies do not consider PES
as MPs

R NANYANG
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Missing proteins and relations to
coverage, consistency problems

e An MP may be one of the following
— seqguence is known but hard to detect,
— sequence is known but never detected in MS
— sequence is not known but evidence exists for it e.g. via gene
prediction or in raw spectra.

e The “missing-protein problem” (MPP)---viz. the difficulty in
detecting certain proteins despite transcript or theoretical
evidence---should more rightfully be considered a narrow
manifestation of the more general coverage (the inability to
survey the entire proteome) and consistency (the inability to
consistently detect a protein) problems

TECHNOLOGICAL
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Coverage and consistency

Samples
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Why do proteins go missing?

Technical Biological

Informatics

Low Abundance Unknown variants Sequence ambiguity
* MP The MP's spectra O-O-@-@ Known sequence Oo—O0——Owp
-g have low |rr11t(;ert1)3|:n-:is @ -@-@ Unknown mods o9 0O0—OFrt
= IS xe )l O-O—@ unknown variant (05001
y distinguishable from _ _
background The MP has unknown splice The MP lacks unique
P1 P2 m/z forms or PTMs sequences
Low-Instrument Resolution Instrument Bias Cross-interference
MS1 '
% Low-resolution 3 T 4F spec::::
instruments ‘g | | | A |
%, Detected Undetected 4 g ARW % often mixed up
g E . E with other
& capture all Missed :
IS ) | proteins
peptide signals ks L e
concurrently  Random precursor selection @ Detected O Masked
Large reference libraries Not found in library Parameterization
Library
R ® Librar ? Match
.g _8 % I ‘»3 é tol_e_ra_nce setting (@@ Detected
(0] c ~ Q i
2|, @) s||, SN @ Theoretical
m/z ® T Mz %
@ True match QFalse match

Cutoff result in MPs

The MP sequence is absent

Zhou et al. Understanding missing proteins: A functional perspective. Drug Discovery Today, 2018
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Missing value imputation (MVI)

o A few strategies:

— We fill iIn Os or a fixed value based on the
average of all protein expression

— For each missing value per protein, we fill in
the average value based on all olbbserved
values for that same protein

— We estimate the missing value based on
proteins that are known to be correlated

R NANYANG
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Missing value imputation (MVI)

Samples
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Limitation: It mostly only works well for inconsistency issue




Webb-Robertson, JPR, 14(5):1993-2001, 2015

MVI
methods

really
don’t

work very

well

el

Q

log CV (RMSE)
N

BPCA REM LSA MBI PPCA LOD2 KNN LLS RTI LOD1
Imputation

Figure 2.
Boxplot of the average log; CV(RMSE) for the imputed dilution series datasets (Table 1) at

the (A) peptide and (B) protein levels. The lower line represents the 25th percentile, the
upper line of the box represents the 75th percentile, and the inner line corresponds to the
median log;o CV(RMSE).
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Webb-Robertson, JPR, 14(5):1993-2001, 2015 ‘l 00
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equa"y Peptide within Sham group

diStribUted Figure 1.

Average log; o intensity as measured by peptide peak area in the control group versus

across th = fraction of missing values and peptide counts associated with bins corresponding to the
. fraction of missing data comparing phenotypes and exposures for datasets from (A) human
h orizo nta I plasma and (B) mouse lung. The control group for the human plasma is the normal glucose
- tolerant (NGT) samples. and the sham group for the mouse lung is the regular weight mice
m ed 1an. with no lipopolysaccharide (LPS) exposure. The vertical red line represents median average

intensity, and the horizontal red line represents the point that 50% of the values are missing.
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How about we use the idea of “guilt-
by-association?”

e Postulate: The chance of a protein complex being present in a sample is
proportional to the fraction of its constituent proteins being correctly
reported in the sample

e Suppose proteomics screen has 75% reliability; a complex comprises
proteins A, B, C, D, E; and screen reports A, B, C, D only but not E.

— Complex has 60% (= 0.75 * 4 / 5) chance to be present

= The unreported protein E also has > 60% chance to be present, as
presence of the complex implies presence of all its constituents

—=IMmproving coverage (recover missing

proteins)

— FEach of the reported proteins (A, B, C, and D) individually has 90% (=
100% * 0.6 + 75% * 0.4) chance of being true positive, whereas a
reported protein that is isolated has a lower 75% chance of being true
positive

=>removing noise
A NANYANG
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Goh and Wong. Integrating networks and proteomics: moving forward. Trends in Biotechnology, 2016

Goh and Wong. Design principles for clinical network-based proteomics. Drug Discovery Today: 2016



How about we use the idea of “guilt-

by-association?”
The functional class scoring (FCS) algorithm

Identified Proteins P‘o‘ei.n.Ligr:ry Real Complex Randomized Complex
eoe P e o9y 0
L e gV, S ¥

P(Significant Enrichment)? v '

Real Complex ' ’
g & g Og @

® ® .

' 1 1000
Real Complex Overlap Randomised Complex Overlaps
Significant Real Complexes Identified Proteins  Recovered Missing
Proteins

o
o teals s i
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Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice. JPR, 2013




Does context really work?

Method Novel Suggested Proteins  Recovered proteins Recall Precision
133 1037 158 0.317 0.152
axting 822 226 0.454 0.275
FCS 638 224 0.450 0.351
(predicted)
FCS 895 477 0.958 0.533

(complexes)

e | ooks like running FCS on real complexes
IS able to recover more proteins and more
accurately

But we can’t rank the individual proteins simply based on p-values. Can we do
better? This is a story for another time. Or simply refer to

https://www.comp.nus.edu.sg/~wongls/talks/wls-incob2017.pdf B NANYANG
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Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice. JPR, 2013



What have we learnt?

e (Getting good quality PSMs requires
consideration of a large numlber of factors

e [he p-value, FDR and PEP are used as
statistical approaches for different purposes

e [here are 3 strategies for creating decoy
libraries in FDR estimation

e Proteomics is plagued with coverage and
consistency Issues, requiring various rescue
analysis




You should be able to

e Describe the various factors affecting
PSM quality

e Describe p-values, FDR and PEP

e Describe and evaluate the various decoy
lbrary generation strategies (sequence

reversal, sequence randomization) for
-DR estimation

e Describe coverage and consistency
ISSUES IN proteomics
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Readings

Elias and Gygi. Target-Decoy Search Strategy for Mass
Spectrometry-Based Proteomics. Methods Mol Biol. 604: 55—
71, 2010.

Goh et al. Comparative network-based recovery analysis and
proteomic profiling of neurological changes in valporic acid-
treated mice. JPR. 12 (5), 2116-2127, 2013

Goh and Wong. Advanced bioinformatics methods for practical
applications of proteomics. Briefings in Bioinformatics, 2017
(https://doi.org/10.1093/bib/bbx128)

Kall et al. Assigning significance to peptides identified by
tandem mass spectrometry using decoy databases. JPR.
7(1):29-34, 2008
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Readings

e (Goh and Wong. Integrating networks and proteomics: moving
forward. Trends in Biotechnology, 34(12):951-959, 2016

e Goh and Wong. Design principles for clinical network-based
proteomics. Drug Discovery Today, 21(7):1130-1138, 2016

e (Goh and Wong. Dealing with confounders in omics analysis.
Trends in Biotechnology, SO0167-7799(18)30047-7, 2018

e (Goh and Wong. Advanced bioinformatics methods for practical
applications in proteomics. Briefings in Bioinformatics, 2017.

e /hou et al. Understanding missing proteins: A functional
perspective. Drug Discovery Today, 23(3):644--651, March 2018.
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