

Statistics for Proteomics

Wilson Wen Bin Goh

School of Biological Sciences, Nanyang Technological University

23 November 2017

Learning objectives

- Describe the various factors affecting PSM quality
- Describe p-values, FDR and PEP
- Describe and evaluate the various decoy library generation strategies (sequence reversal, sequence randomization) for FDR estimation
- Describe coverage and consistency issues in proteomics

Using Proteomics in practical applications

Match Significance

Functional Analysis

Statistics plays key roles in both areas

Kall and Vitek, PLoS Comput Biol, 7(12): e1002277, 2011

Overview of proteo-informatics

What is **PSM**?

- PSM stands for Peptide-Spectra Match
- It is a pairing of sequence with spectra
- You've seen this earlier when we considered library search algorithms
- Earlier we showed a simple scenario where there is only one possible sequence match per spectra...
- But in practice...

What determines whether or not we get a good PSM?

- Search parameters
- Library quality and size
- Spectra quality
- Algorithm scoring method
- Statistical evaluation

Search parameters

- Precursor mass tolerance (PMT)
- Fragment mass tolerance (FMT)
- Post-translational modification (PTM)

Precursor mass tolerance (PMT)

• PMT deals with MS1 (peptide level)

What happens when the PMT window size is increased?

Fragment mass tolerance (FMT)

• FMT deals with MS2 (identification level)

Which looks like the correct answer?

Post-translational modification (PTM)

- Some peptide sequences undergo chemical modifications resulting in mass shifts
- If the PTMs are not specified in the search space, then the corresponding PSM may not be detectable

Some fragments will contain the PTM in MS2

Search space

- The set of candidate peptides to be considered for potential match to spectra
- Without PTMs, the search space is simply the set of peptides
- With PTMs, the search space effectively doubles for every PTM to be considered.

Examples of typical PTMs

- Phosphorylation
- Ubiquitination
- O-GlcNAcylation
- Methylation
- Acetylation

- Succinylation
- SUMOylation
- Citrullination

Some 260 000 PTM sites that have been identified in the human proteome thus far, but only a few have been assigned to key regulatory and/or other biological roles!

It is difficult to pin-point exact locations of PTMs as well. And incorporating all possibilities (where there is only 1 or few right matches)... can lead to high false positive rates (we will NANYAI See how later).

Library quality and size

- UniProt sequence library has 2 databases
 - SwissProt (manually curated and reviewed) > 500K sequences
 - TrEMBL (Automatic annotation, no review) > 90M sequences

What are potential explanations for 1, 2 and 3?

Spectra Quality

Incomplete fragmentation Mixed signals Low-resolving time. Low-resolution instrument MS1 Spectra from various proteins are mixed together MS1 MS2 MS2 Lack resolving Fully informative Intensity information Intensity Intensity Intensity AL ALLV... ALLVLG ALL ALLVLG m/z ALL А m/z m/z

m/z

Masked

Detected

Complete MS2 profile allows confident identification of spectra

Statistical testing

The elements of null hypothesis statistical testing

TECHNOLOG

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology 2018

Possible outcomes from a statistical test

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology, 2018

How to remember?

Do you recall type I and II statistical errors?

Type I: Reject the null when the null is true Type II: Fail to reject the null when the null is not true

True positive

Possible outcomes given the PSMs

Imagine we do this for every spectra...

Recall, Precision and the F-score

e.g. let's say we set a p-value cutoff of 0.05

Precision: Of the selected feature, How many are correct?

Recall: Of the selected feature, What is the proportion of all the correct ones we got?

Precision and recall can be combined as: $F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$ Recall is also often called sensitivity or True positive rate

Precision and recall works against each other

The Receiver Operator Characteristic (ROC) curve

Can you write down the formula for FPR yourself?

The Area Under Curve (AUC)

More rightfully called AUROC (Area under the ROC curve)

The blue area corresponds to the AUROC. The dashed line in the diagonal is expected performance due to random chance (so we have to be better than chance)

Total area = $1 \times 1 = 1$ Half area under the diagonal = $\frac{1}{2} = 0.5$ One simple way to get the AUROC is to simply calculate the area using simple length x breadth. But of course one may use calculus.

The False Discovery Rate

The FDR relates to the proportion of errors amongst predictions. It is equals to 1 - precision

The FDR is sensitive to the proportion of true features in the data.

Statistics provides a more objective manner of evaluation

Statistics help us determine the best match

- p-values
- False Discovery Rate (FDR)
- Posterior Error Probability (PEP)

The p-value

We can set up our PSMs as a statistical test (based on the following hypothesis statements)

H0: A PSM is incorrect H1: A PSM is correct

We may reject the null hypothesis with a certain degree of error: Type I: Falsely reject the null hypothesis (False positive) Type II: Falsely accept the null hypothesis (False negative)

The probability of obtaining an equal or more extreme result, assuming the null hypothesis is true (Type I error)

The p-value

- We are comparing the observed score against a distribution of "null scores"
- The null distribution are comprised of the natural distribution of values when there is no signal i.e., when a PSM is incorrect (or the null statement is true)
- Why does this make sense?
- Because under this setup, a small p-value would imply that the observed PSM score is very significant (unlikely to arise due to chance).

The p-value

- For each hypothesis tested. Suppose we use a statistical cutoff at 0.01, we should therefore expect 1 in 100 times the result is a false positive
- Suppose 100 tests are performed, then we should expect 100 * 0.01 = 1 false positive
- To control for this, a multiple test correction can be used. For example, to maintain 0.01
 FPs given 100 tests, the cutoff can be reduced from 0.01 to 0.01/100 = 0.0001

The p-value (in proteomics)

- Is a **local** measure, meaning that it is confined specifically to the particular PSM under consideration (it is therefore self-contained)
- **Global** measures on the other hand, considers all PSMs scores concurrently and relative to each other (they are therefore not self-contained).
- Lets say we observe a PSM with a score of 1, we can build an empirical reference distribution of similar false/random sequences and find out what are their respective PSM scores. If the observed PSM does better than at least some alpha threshold, then we can say that this PSM is statistically significant, and so we reject the null hypothesis for the alternative.
- This is computationally very intensive. ALSO... what is a reasonable null?

False Discovery Rate (FDR): The expected fraction of false positives among the significant test statistics. (FP/FP+TP)

Compare this against the false positive rate which is FP/(FP+TN)

score	type	
7.5	correct	
7.2	correct	
6.9	correct	
6.8	correct	
6.7	incorrect	
6.5	correct	
6.4	correct	
6.4	correct	
6.3	incorrect	
6.1	correct	
6.0	incorrect Three	est
5.9	correct	
5.7	incorrect	

So how do we look at this?

Let's say we have a set of PSM scores and decide to draw the line at 6, i.e., we accept all PSMs with scores > 6.

Let's also assume we have perfect knowledge of correct and wrong matches.

We note that 10 PSMs are retained.

Of these, 2 are wrong. So the FDR is therefore FDR = 2/10 = 20% = 0.2

This seems great. But in reality, we don't know which ones are wrong. This is similar to the null problem in pvalue generation. So how do we create something which we know to be wrong or sure? False Discovery Rate (FDR)

The target-decoy analysis

Estimating FDR: How to purposely create your incorrect PSMs

Target database Protein sequences of the studied organism.

Decoy database

Reversed or shuffled sequences.

Assumption

Spectra matched to the decoy database are good models of **incorrect** matches to the target database.

In other words, all matches to decoy are false positives

False Discovery Rate (FDR)

Elias and Gygi. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. Methods Mol Biol. 2010.

Target-decoy searching steps

- Construct a concatenated targetdecoy sequence list, marking decoy sequences with a text flag in their annotation.
- Use a MS/MS search engine to interpret input MS/MS spectra using target-decoy sequence list.
- Evaluate the relative proportion of target and decoy sequences in the search space to derive the multiplicative factor required to estimate false positives, if necessary.
- Estimate false positive-related statistics.
- Use decoy hits to guide the establishment of filtering criteria.
- Report statistics for filtered data set.

Decoy construction rules

- Similar amino acid distributions as target protein sequences.
- Similar protein length distribution as target protein sequence list.
- Similar numbers of proteins as target protein list.
- Similar numbers of predicted peptides as target protein list.
- No predicted peptides in common between target and decoy sequence lists.

False Discovery Rate (FDR)

Reversal

Advantages

- Simple
- Preserve general features of the target sequence list e.g. same inter-
- protein redundancy
- transformation therefore repeatable

Disadvantages

- Non-random transformation is less statistically rigorous
- Cannot be used for peptides with low sequence complexity

Shuffling

Advantages

Simple Has desired stochastic properties

Disadvantages

Redundancies and
homologies
between protein
entries will not be
preserved, so many
more decoy
peptides than
originally present in
the target sequence
list

Random Proteins

Advantages

- Has desired stochastic
- Can preserve amin acid bias and protein length
 - distribution

Disadvantages

Redundancies and homologies between protein entries will not be preserved, so many more decoy peptides than originally present in the target sequence list

FDR estimation based on decoy

No decoy

With decoy

 π_0 is the fraction of incorrect target PSMs among target PSMs Target-decoy analysis

Combined searches

Target and decoy database are searched togethe

FDR = {#decoys over threshold} / {#targets over threshold}

I.e., π_0 is 1 Simpler. Since estimating π_0 can be tricky.

Posterior Error Probability (PEP): The probability that the null hypothesis is true for a particular test statistic

In proteomics, it can be taken to mean the probability that a given PSM is wrong. PEP is sometimes called "local FDR"

A PEP is the probability that a PSM scoring x is incorrect

a

Statistical evaluation: when to use what?

Overview of proteo-informatics

Functional analysis 1 (Comparative analysis)

- The process of creating knowledge and insight from biological data
- Comparative analysis (group A vs B)
 - Assumption: the differences between two groups are phenotypically relevant and can be used to construct mechanistic explanation
 - This is a fallacious assumption.

The Anna Karenina Principle

- Happy families are all alike, every unhappy family is unhappy in its own way
 --- Leo Tolstoy
- Interpreted as: There are many ways to violate the null hypothesis, but only one way that is pertinent to the outcome of interest

Happiness does not come easy

Anna Karenina in comparative proteomics

Dealing with the Anna Karenina

Causes

- A careless null/alternative hypothesis due to forgotten assumptions:
 - Distributions of the feature of interest in the two samples are identical to the two corresponding populations
 - Features not of interest are equalized/controlled for in the two samples
 - No other explanation for the significance of the test
 - Null distribution models the real world
- These make it easy to reject the carelessly stated null hypothesis and accept an incorrect alternative hypothesis.

Dealing with the Anna Karenina

Good Practices to Avoid Wrong Conclusions and Get Deeper Insight

- Check for sampling bias:
 - Are the distributions of the feature of interest in the two samples same as that in the two populations?
- Check for exceptions:
 - Are there large subpopulations for which the test outcome is opposite?
 - Are there large subpopulations for which the test outcome becomes much more significant?
- Check for validity of the null distribution:
 - Is there evidence that suggests the null distribution is inappropriate?
- Check the hypothesis statement construction
 - Are the hypothesis statements being framed correctly (as opposed to a statement that is prone to being rejected for the wrong reasons)?

Dealing with the Anna Karenina

Good Practices to Avoid Wrong Conclusions and Get Deeper Insight

- Check your assumptions
 - Are the right assumptions being made (e.g. the independence of measured variables)?
- Check if appropriate summary statistics are used
 - If an event is extremely rare, then using mean/median-based statistics will miss it; ditto if many similar events are present, but only one is relevant
- Note: Even if all (or most) of the above points are addressed, it still does not ensure phenotypic relevance, only correlation.

Functional analysis 2 (Missing proteins)

	Samples																												
🕱 🛛 🛪 🕐 🕫 🖃 👘 nm.3807-54.xls [Read-Only] [Compatibility Mode] - Microsoft Excel 🛛 🗕 🗖												∎ ×																	
File	Ho	me Inse	ert Page Layo	ut Form	iulas Da	ata Revie	ew View	Acroba	t) ۵) - # %
	🔏 Cut		Calibri	- 11 -		= _ [20			Caparal				Norma		Pad	God	vd.	Noutral		Calculation	-		K .	Σ AutoSur	m * A	an.		
	Cop	y -	Calibri	• 11 •	AA		***		ext	General			<u> </u>	Norma	·	Dau	000	Ju	Neutra		calculation	-			🛃 Fill 👻	Zľ	unu		
Paste	💞 Forn	nat Painter	BIU·	E * 🗳	• <u>A</u> •		1	📲 Merge 8	& Center *	\$ - %	• .00 .00	Formattin	nal ⊦ormat 1g ≠ as Table	- Check 0	Cell	Explanator	y Inp	ut	Linked	Cell	Note	-	Insert Dele	te Format	🧟 Clear 🛪	Sort & Filter *	Select 7		
	Clipboard	5	F	ont	5		Alignme	nt	G	Numb	er í	a l					Styles						Cel	ls		Editing			
	X30		r (° fx	NA																									¥
	А	В	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC 🔺
		GeneSy		kidneyTis	kidneyTis	s kidneyTis	s kidneyTi	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTi:
1	rotein	mbol	kidneyTisue1	ue2	ue3	ue4	ue5	ue6	ue7	ue8	ue9	ue10	ue11	ue12	ue13	ue14	ue15	ue16	ue17	ue18	ue19	ue20	ue21	ue22	ue23	ue24	ue25	ue26	ue27
2	209110	ACAA1	288001.7778	46353.28	237958.5	30102.47	297711.2	37098.09	67454.84	92200.62	231528.4	12617.18	263299.1	NA 120288 5	222387.2	NA 115139	177211	27857.94	84689.84	43497.89	280540.3	77962.17	235242.5	23827.06	302761.4	41190.07	2064.747	97756.44	122386.3
3	96809	GEM1	240067.75	70304.27 NA	40359.89		73975 35	55060.05	64601.65	56815.28	200365.3	35176.2	236247.1	23060.3	204954.5	NA	243353.5	33/91 8	48208.46	47858 24	240034.8	03477.55 NA	67976.03	23631 74	327733 46763.48	41574.24 NA	2064 747	521442.7	67555.47
5	015417	CNN3	28364.89722	NA	40339.89 NA	NA	NA	44156.47	52272.02	27128.03	10577.49	32524.27	14171.12	33388.93	27593.38	49821.32	23144.21	24964.95	32403	47838.24 NA	24907.94	46053.92	NA	23031.74 NA	25129.86	42948.4	2064.747	26438.35	23207.51
6	096FQ6	S100A16	NA	35176.2	NA	66058.39	NA	30674.6	1804.538	21706.65	NA	NA	11359.64	NA	18677.58	41493.97	12617.18	22496.77	NA	NA	NA	36422.79	NA	75858.83	20589.93	31161.06	2064.747	20398.13	NA
7	P62820	RAB1A	NA	NA	NA	NA	NA	NA	54417.16	3130.811	NA	68503.39	NA	NA	NA	NA	NA	NA	NA	NA	32596.28	NA	NA	54839	NA	48748.28	2064.747	NA	NA
8	27169	PON1	NA	47101.83	58436.31	18128.35	NA	33573.36	112930.6	NA	NA	NA	NA	59432.1	NA	39084.55	36282.92	16953.34	NA	NA	NA	45107.13	NA	19506.67	NA	38130.55	109838.9	NA	NA
9	29UL46	PSME2	33680.65278	99968.93	59047.33	145114.2	33256.26	141575.7	77962.17	75727.38	64365.04	121022.2	40286.83	114480.8	40567.01	104458.4	42876.78	83666.14	55954.92	62742.03	33768.27	111940.8	59915.42	151558.9	38443.16	113145.5	79024.33	73747.38	40140.37
10	08237	PFKM	39644.09722	NA	54240.61	. NA	136064	NA	1804.538	62845.97	141296.3	100616.3	137596.7	NA	140860.9	NA	96590.73	NA	92823.65	51085.24	155550.8	NA	47697.29	NA	136064	NA	2064.747	58618.05	143381.1
11	204040	CAT	292456.0528	149632.6	239229.2	24964.95	258247.1	220764.4	540115.8	133921.9	284934.5	367784.7	293727.3	179981.9	259314.6	124294.3	204722.1	77070.33	109006.7	136875.9	290924.4	163095.2	237958.5	31389.75	271920.4	227900.3	499422.8	150524.5	294964.3
12 0	8WYA6	CTNNBL1	NA 454501 5933	NA	NA 202512.7	NA	NA 265075 5	NA 190525-1	1804.538	NA	NA 252808.0	NA	NA 417000.0	NA 262200-1	NA 474707	NA 220655.0	NA	27646.1	37621.73	26686.24	NA 441056 5	NA 74155-41	NA 270040 F	NA AAGOE RE	NA	NA 197566.9	2064.747	NA 104101.6	NA 275452.4
10	319/8	STID1	76018 00556	83236.9	83516.5	137596 7	75613.89	110367.2	98642.3	1951/6	77709 53	282315.9	65948 94	122386.3	4/4/5/ 81635.42	129969.2	677/9.81	124568	124300	135737.2	69039.96	92656.4	85600.47	44003.80	65262.99	109273 7	91127.04	218888	122047.2
15	094901	SUN1	57623.33889	NA	NA	NA	72273.86	NA	1804.538	NA	NA	NA	58063.49	NA	NA	NA	NA	NA	NA	NA	60013.66	NA	NA	NA	71252.19	NA	2064.747	NA	NA
16	299714	HSD17B10	175372.7444	114480.8	181096.8	75400.28	222387.2	91466.47	218888	269679.7	179177.4	165285.9	202618.2	117389.5	191537	41135.21	196208.5	151044.7	210269.6	294964.3	183893	82644.38	179981.9	102286.8	233372.9	91325.89	196996.8	293727.3	174540.8
17	15833	STXBP2	14224.84722	24264.99	14303.05	19690.86	16316.33	NA	1804.538	NA	14303.05	17309.98	11459.84	14224.85	12617.18	NA	14224.85	9837.458	21131.38	5634.228	13283.71	28846.59	20057.06	12924.71	17380.49	NA	2064.747	11880.63	13166.66
18	08195	SLC3A2	50797.625	42825.82	63302.14	26628.24	85345.18	NA	1804.538	N	77850.07	NA	100616.3	I A	7 579.02	NA	4010.6	17146 31	NA	NA	80199.58	41362.6	72273.86	32198.97	75858.83	NA	2064.747	NA	76292.57
19	P26038	MSN	333342.6833	438752.3	421056.2	381249.5	241992.3	404349.8	164343.5	17.02	46678 9	1 7923 7	67784 -2	3.0 72.5	4 43 9 1	9351.7	22.55	127428	390317.5	244865.7	273261.7	446678.9	404349.8	306071.8	222387.2	423963.5	191537	182241.6	441856.5
20	P09104	ENO2	NA	144058.2	NA	184650.5	NA	137596.7	126146.3	21831.50	MA	MA \	NA	119050.8	NA	404349.8	■ ¶A	40438.29	57080.76	NA	NA	151558.9	NA	181096.8	NA	123793.9	2064.747	NA	NA
21	0/148	FABP1	1219163./14	34579.48	861/96.3	NA	940142	NA	1804.538	NA	1130692	NA	105/986	NA	/89446.1	NA	221565	NA	NA	NA 25555 02	1162/86	32336.43	805128.4	NA	970053.3	NA	2064.747	NA	1300/18
22	15092	EPC2	NA	NA	NA	NA 95740.42	NA NA	NA	1804.538	NA	NA 92200 22	NA	NA	NA	NA	NA	NA	142206.9	37098.09	30000.U3	NA	NA	NA	T2206.49	NA	NA	2064.747	NA	INA 70212 42
23	015911	ZFHX3	NA	NA	178745.3	393512.7	205865.1	682653.9	1804.538	NA	243050.1	NA	189860.5	NA	NA	NA	NA	457756.2	NA	NA	NA	NA	NA	NA	NA	NA	2064.747	NA	252846.2
25	9BUR5	APOO	35479.70278	NA	27260.11	15459.06	40140.37	NA	1804.538	46154.89	30730.15	54737.36	47185.33	13642.38	28517.17	NA	40140.37	NA	NA	10649.17	34436.2	NA	36956.08	16653.18	47858.24	NA	2064.747	33003.64	20057.06
26	290183	HACL1	417999.9306	NA	435248.4	NA	336790.8	227161.7	1804.538	174111.8	276628.6	NA	274264.6	NA	317227.1	271920.4	336790.8	NA	NA	372485.6	446678.9	NA	390317.5	NA	307205	211073.8	2064.747	169817.6	333342.7
27 C	8WUM4	PDCD6IP	50008.50556	34991.44	70504.27	50108.55	59047.33	41611.18	84319.78	97140.59	56715.96	134561.7	52110.31	61553.77	67555.47	65262.99	68597.03	59827.38	73200.35	75049.44	64108.37	40359.89	70903.29	49636.31	49821.32	37258.59	76579.02	76685.11	37386.23
28	P53597	SUCLG1	387432.1583	99433.59	228946.3	94932.09	310472.5	150524.5	187002.3	299487.5	275420.7	308775.7	299487.5	101732.7	245595.9	108554.7	270810.9	89524.72	192915.6	276628.6	357417.6	96737.9	205171.6	95793.82	288001.8	162300.5	193664.8	299487.5	245595.9
29	000186	STXBP3	NA	28468.21	NA	NA	NA	19019.68	1804.538	NA	NA	NA	NA	21949.83	NA	NA	NA	NA	NA	NA	15575.29	29005.53	NA	NA	NA	NA	2064.747	NA	NA
30	28N335	GPD1L	52415.71111	NA	59328.51	NA acora ao	54240.61	21949.83	109838.9	91466.47	45427.61	109273.7	50443.03	NA COCOS DO	52700.48	22321.01	45502.32	NA	57623.34	41362.6	54737.36	NA	62380.69	NA	54839	23827.06	152627.3	71658.52	49636.31
31	08621	SINKINP70	48594.65	01225 00	4/269.07	86082.28	74369.09	20102 57	1804.538	NA	59432.1 71006 42	54839	49030.31	152627.2	72497.5	NA 72497 5	NA 00662.00	72977.35	/4540.25	82242.07	33003.64	00005.33	49030.31	93224.91	NA	20004 66	2064.747	NA	50/97.03
32	250570	CTSG	NA	NA	46154.89	NA	74205.05 ΝΔ	67879 78	1804.538	NΔ	53026 19	NA	NA	68927.99	NA	NΔ	NΔ	NA	218057.1	78414 15	72021.33 NA	NA	46895.88	NΔ	NA	56514 53	66379.24	NΔ	NA
34	9UKU7	ACAD8	46053,91944	31797.32	50179.16	NA	64601.65	NA	75160.02	49228.15	44010.16	28070.84	41974.24	NA	41840.21	NA	42678.39	NA	24335.52	32270.84	46053.92	NA	49467.07	NA	61900.08	NA	2064.747	46053.92	44605.86
35	Q86X76	NIT1	75613.88611	NA	61068.98	63988.55	80199.58	69590.71	1804.538	55745.15	70389.43	NA	84009.8	75506.47	78547.77	84980.21	76153.19	NA	57523.94	40935.27	70713.02	NA	59540.84	70713.02	78753.85	73278.36	55745.15	58932	52415.71
36	P05162	LGALS2	33491.8	NA	35565.03	NA	52415.71	36825.06	1804.538	23560.07	18592.77	NA	36763.92	72761.18	35479.7	50008.51	24907.94	NA	16653.18	22730.31	34916.06	NA	30730.15	NA	32815.68	71139.86	2064.747	NA	25737.06
37	23946	CMA1	NA	NA	NA	NA	NA	NA	1804.538	NA	NA	NA	NA	NA	NA	NA	NA	NA	61155.07	14049.16	NA	NA	NA	NA	NA	NA	53240.82	NA	NA
38	01834	IGKC	462133.8694	885197.1	692332.5	484624	296507.9	462133.9	1219164	319228.4	659554.4	351190.2	312295.6	524995.4	566103.9	692332.5	325019.6	494067.2	286640.3	263299.1	499422.8	1130692	706520.3	469971.2	322906.2	438752.3	913960	310472.5	643593
39	P14868	DARS	12567.36389	110112	54554.37	136875.9	30209.1	121022.2	1804.538	114195.5	43350.86	95493.71	29430.84	182241.6	61667.11	201171.9	81193.99	247871.5	161420	94484.9	76929.26	114678.3	54839	177772	50108.55	141996.6	2064.747	95951.08	53026.19
40	29H773	DCTPP1	NA 1end 2	NA	NA	NA	NA	NA	1804.538	46303.49	NA	11589.48	NA	27509.79	NA	NA	NA	26314.17	87070.11	/4656.39	NA	NA	NA	NA	NA	NA	2064.747	22251.11	NA 🔻
Read																											100%	Θ	Ū
-	-					P-																				EN			4:35 PM
				-																							- (a) (

Samplas

Cannot do analysis properly with such data

Proteins

Missing proteins

- Any gene sequence whose respective protein has never been observed is an MP.
- Alongside various initiatives---e.g. GPMDB, PeptideAtlas and neXtProt ---the goal is to establish a genomeproteome bridge.

Missing proteins (Tiers 1 to 5)

PE Tier	Inclusion criteria	Percentage of proteome against 20,055 proteins	Notes
1	Evidence at proteome level	~82.0% (16,518)	*At least 2 unique non-overlapped peptides at least 9 amino acid residues long
2	Evidence at transcript level only	~11.5% (2,290)	*The transcript must be confidently detected, but no corresponding protein evidence
3	Homology inference only	~3.0% (565)	*Inferred homologues without protein or transcript support
4	Predicted	~0.5% (94)	*Predicted coding sequence, without homology, transcript or protein support
5	Dubious	~3.0% (588)	*The sequence may not fully meet the criteria for a predicted coding sequence *Uncertainty over the veracity of the coding sequence (i.e., we do not know the sequence is correct) *Some studies do not consider PE5 as MPs

Missing proteins and relations to coverage, consistency problems

- An MP may be one of the following
 - sequence is known but hard to detect,
 - sequence is known but never detected in MS
 - sequence is not known but evidence exists for it e.g. via gene prediction or in raw spectra.
- The "missing-protein problem" (MPP)---viz. the difficulty in detecting certain proteins despite transcript or theoretical evidence---should more rightfully be considered a narrow manifestation of the more general coverage (the inability to survey the entire proteome) and consistency (the inability to consistently detect a protein) problems

Coverage and consistency

Goh and Wong. Advanced bioinformatics methods for practical applications of proteomics. Briefings in Bioinformatics, 2017

Why do proteins go missing?

Missing value imputation (MVI)

- A few strategies:
 - We fill in 0s or a fixed value based on the average of all protein expression
 - For each missing value per protein, we fill in the average value based on all observed values for that same protein
 - We estimate the missing value based on proteins that are known to be correlated

Limitation: It mostly only works well for inconsistency issue

MVI methods really don't work very well

Figure 2.

Boxplot of the average $\log_{10} \text{CV}(\text{RMSE})$ for the imputed dilution series datasets (Table 1) at the (A) peptide and (B) protein levels. The lower line represents the 25th percentile, the upper line of the box represents the 75th percentile, and the inner line corresponds to the median $\log_{10} \text{CV}(\text{RMSE})$.

Webb-Robertson, JPR, 14(5):1993-2001, 2015

High abundance has lower % of MPs. However, low abundance is not a solely explanation. The MPs are equally distributed across the horizontal median.

Figure 1.

Average log₁₀ intensity as measured by peptide peak area in the control group versus fraction of missing values and peptide counts associated with bins corresponding to the fraction of missing data comparing phenotypes and exposures for datasets from (A) human plasma and (B) mouse lung. The control group for the human plasma is the normal glucose tolerant (NGT) samples, and the sham group for the mouse lung is the regular weight mice with no lipopolysaccharide (LPS) exposure. The vertical red line represents median average intensity, and the horizontal red line represents the point that 50% of the values are missing.

How about we use the idea of "guiltby-association?"

- **Postulate**: The chance of a protein complex being present in a sample is proportional to the fraction of its constituent proteins being correctly reported in the sample
- Suppose proteomics screen has 75% reliability; a complex comprises proteins A, B, C, D, E; and screen reports A, B, C, D only but not E.
- \Rightarrow Complex has 60% (= 0.75 * 4 / 5) chance to be present
- ⇒ The unreported protein E also has \geq 60% chance to be present, as presence of the complex implies presence of all its constituents

⇒improving coverage (recover missing proteins)

⇒ Each of the reported proteins (A, B, C, and D) individually has 90% (= 100% * 0.6 + 75% * 0.4) chance of being true positive, whereas a reported protein that is isolated has a lower 75% chance of being true positive

⇒removing noise

Goh and Wong. Integrating networks and proteomics: moving forward. Trends in Biotechnology, 2016 Goh and Wong. Design principles for clinical network-based proteomics. Drug Discovery Today³ 2016

How about we use the idea of "guiltby-association?"

The functional class scoring (FCS) algorithm

Does context really work?

Method	Novel Suggested Proteins	Recovered proteins	Recall	Precision
PEP	1037	158	0.317	0.152
Maxlink	822	226	0.454	0.275
FCS (predicted)	638	224	0.450	0.351
FCS (complexes)	895	477	0.958	0.533

 Looks like running FCS on real complexes is able to recover more proteins and more accurately

But we can't rank the individual proteins simply based on p-values. Can we do better? This is a story for another time. Or simply refer to https://www.comp.nus.edu.sg/~wongls/talks/wls-incob2017.pdf

Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice. JPR, 2013

What have we learnt?

- Getting good quality PSMs requires consideration of a large number of factors
- The p-value, FDR and PEP are used as statistical approaches for different purposes
- There are 3 strategies for creating decoy libraries in FDR estimation
- Proteomics is plagued with coverage and consistency issues, requiring various rescue analysis

You should be able to

- Describe the various factors affecting PSM quality
- Describe p-values, FDR and PEP
- Describe and evaluate the various decoy library generation strategies (sequence reversal, sequence randomization) for FDR estimation
- Describe coverage and consistency issues in proteomics

Readings

- Elias and Gygi. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. Methods Mol Biol. 604: 55– 71, 2010.
- Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice. JPR. 12 (5), 2116-2127, 2013
- Goh and Wong. Advanced bioinformatics methods for practical applications of proteomics. Briefings in Bioinformatics, 2017 (https://doi.org/10.1093/bib/bbx128)
- Käll et al. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. JPR. 7(1):29-34, 2008

Readings

- Goh and Wong. Integrating networks and proteomics: moving forward. Trends in Biotechnology, 34(12):951-959, 2016
- Goh and Wong. Design principles for clinical network-based proteomics. Drug Discovery Today, 21(7):1130-1138, 2016
- Goh and Wong. Dealing with confounders in omics analysis. Trends in Biotechnology, S0167-7799(18)30047-7, 2018
- Goh and Wong. Advanced bioinformatics methods for practical applications in proteomics. Briefings in Bioinformatics, 2017.
- Zhou et al. Understanding missing proteins: A functional perspective. Drug Discovery Today, 23(3):644--651, March 2018.

