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Learning objectives
• Describe the various factors affecting PSM 

quality

• Describe p-values, FDR and PEP

• Describe and evaluate the various decoy library 
generation strategies (sequence reversal, 
sequence randomization) for FDR estimation

• Describe coverage and consistency issues in 
proteomics



Using Proteomics in practical applications

Kall and Vitek, PLoS Comput Biol , 7(12): e1002277, 2011

Statistics plays key roles in both areas

Match Significance Functional Analysis



Overview of proteo-informatics

Mass spectrometry

Search algorithm

De novo sequencing

Statistical validation 
of peptide and 

protein 
identifications

Data storage/
representation
formats

Quantitation

Data 
Storage/Dissemination

Functional Analysis

Peptide-spectra matching
(PSM)

Functional analysis



What is PSM?

• PSM stands for Peptide-Spectra Match

• It is a pairing of sequence with spectra

• You’ve seen this earlier when we 
considered library search algorithms

• Earlier we showed a simple scenario
where there is only one possible 
sequence match per spectra…

• But in practice…



What determines whether or not we 
get a good PSM?

• Search parameters

• Library quality and size

• Spectra quality

• Algorithm scoring method

• Statistical evaluation



Search parameters

• Precursor mass tolerance (PMT)

• Fragment mass tolerance (FMT)

• Post-translational modification (PTM)

MS1
MS2



Precursor mass tolerance (PMT)

• PMT deals with MS1 (peptide level)
PMT is usually specified in 
terms of daltons

PMT 1 Da

PMT 2 Da PMT 3 Da

What happens when the PMT window size is increased?

Sequence library

MS1

Peptide A

Peptide B

Peptide C
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Fragment mass tolerance (FMT)
• FMT deals with MS2 (identification level)

Sequence library

MS1

Peptide A

Peptide B

Peptide C
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Which looks like the correct answer?



Post-translational modification (PTM)
• Some peptide sequences undergo chemical modifications 

resulting in mass shifts

• If the PTMs are not specified in the search space, then the 
corresponding PSM may not be detectable

Some fragments will contain the PTM in MS2

Sequence library (no PTM)

MS1

Peptide X
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+PTM

Sequence library (PTM specified)
Peptide X

(Missed)

(Found)

+PTM



Search space
• The set of candidate peptides to be considered for potential 

match to spectra

• Without PTMs, the search space is simply the set of peptides

• With PTMs, the search space effectively doubles for every PTM to 
be considered.

0 PTM 1 PTM 2 PTM

1 2 4

3 PTM

8



Examples of typical PTMs

• Phosphorylation
• Ubiquitination
• O-GlcNAcylation
• Methylation
• Acetylation

• Succinylation
• SUMOylation
• Citrullination

Some 260 000 PTM sites that have been identified in the human proteome thus far, but 
only a few have been assigned to key regulatory and/or other biological roles!

It is difficult to pin-point exact locations of PTMs as well. And 
incorporating all possibilities (where there is only 1 or few 
right matches)… can lead to high false positive rates (we will 
see how later).



Library quality and size

• UniProt sequence library has 2 
databases

– SwissProt (manually curated and reviewed) -
> 500K sequences

– TrEMBL (Automatic annotation, no review) -
> 90M sequences



Consider this scenario…

mass 
0 

In
te

ns
ity

 

Potential match 1

Potential match 2

Potential match 3

What are potential explanations for 1, 2 and 3?

MS/MS spectra



Spectra Quality

Incomplete fragmentation

In
te

ns
ity

m/z

MS1 MS2

In
te

ns
ity

m/z

Lack resolving 
information
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Mixed signals

Spectra from various 
proteins are mixed together
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Detected Masked

Complete MS2 profile allows confident
identification of spectra

Low-resolving time. 
Low-resolution instrument

MS1



Statistical testing
The elements of null hypothesis statistical testing

There is no effect (Gene is irrelevant)
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There is no effect (Gene is 
irrelevant)
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Null rejected (Gene may/may 
not be relevant)

Null condition retained

Statistical test

Statistical test

The PSM is not a true match

The PSM is not a true 
match

Null rejected. So the PSM 
is likely a true match

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology 2018



Possible outcomes from a statistical 
test
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4 Possible outcomes

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology, 2018



How to remember?

You’re not 
pregnant

True positive True negative

You’re 
pregnant!

Do you recall type I and II 
statistical errors?

Type I: Reject the null when 
the null is true
Type II: Fail to reject the null 
when the null is not true



Possible outcomes given the PSMs

CORRECT WRONG

CORRECT

WRONG

Predicted as

BUT IN 
Reality..

The PSM is…

Imagine we do this for every spectra…



Recall, Precision and the F-score

Precision: Of the selected feature,
How many are correct? 

Recall: Of the selected feature,
What is the proportion of all the correct
ones we got?

Precision and recall can be combined as:

Recall is also often called 
sensitivity or True positive ratee.g. let’s say we set a p-value cutoff of 0.05



Precision and recall works against 
each other



The Receiver Operator Characteristic 
(ROC) curve

(FPR)

+ -

+
-

Can you write down the formula for FPR yourself?

Good zone

Bad zone



The Area Under Curve (AUC)
More rightfully called AUROC (Area under the ROC curve)

Total area = 1 x 1 = 1
Half area under the diagonal = ½ = 0.5
One simple way to get the AUROC is to simply calculate the area
using simple length x breadth. But of course one may use calculus.

The blue area 
corresponds  to 
the AUROC. The 
dashed line in 
the diagonal is 
expected 
performance due 
to random 
chance (so we 
have to be better 
than chance)

(1 – 0.6) * 1 = 
0.4



The False Discovery Rate

200 
sequences

180 
mapped

20 not 
mapped

162 significant 
- TP

18 non-
significant - FN

1 significant - 
FP

19 non-
significant - TN

200 
sequences

20 
mapped

180 not 
mapped

18 significant - 
TP

2 non-
significant - FN

9 significant - 
FP

171 non-
significant - TN

The FDR relates to the proportion of errors 
amongst predictions. It is equals to 1 - precision

1/163 9/27=1/3

The FDR is sensitive to the proportion of true features
in the data.

False Discovery rate = 
FP/(FP+TP)



How to get all the good quality matches?
What if we just use our eye power?

Can do it by eye?

PSM Score

Statistics provides a more objective manner of evaluation



Statistics help us determine the best 
match

• p-values

• False Discovery Rate (FDR)

• Posterior Error Probability (PEP)



The p-value

We can set up our PSMs as a statistical test (based on the following hypothesis statements)

H0: A PSM is incorrect  

We may reject the null hypothesis with a certain degree of error:

Type I: Falsely reject the null hypothesis (False positive)

Type II: Falsely accept the null hypothesis (False negative)

The probability of obtaining an equal or more extreme result, 

assuming the null hypothesis is true (Type I error)

E.g. p value = 0.02

This can be taken to mean that 2%

of null have a value equal or more extreme 

than the observed

In proteomics, this can be taken to mean

that 2% of all incorrect PSMs have an 

equal or better quality score

H1: A PSM is correct

The score corresponding 

to our PSM

of interest 

Null distribution 

based on false 

matches 

PSM score



The p-value

• We are comparing the observed score against a 
distribution of “null scores”

• The null distribution are comprised of the natural 
distribution of values when there is no signal i.e., 
when a PSM is incorrect (or the null statement is 
true)

• Why does this make sense?

• Because under this setup, a small p-value would 
imply that the observed PSM score is very 
significant (unlikely to arise due to chance).



The p-value

• For each hypothesis tested. Suppose we use a 
statistical cutoff at 0.01, we should therefore 
expect 1 in 100 times the result is a false 
positive

• Suppose 100 tests are performed, then we 
should expect 100 * 0.01 = 1 false positive

• To control for this, a multiple test correction 
can be used. For example, to maintain 0.01 
FPs given 100 tests, the cutoff can be reduced 
from 0.01 to 0.01/100 = 0.0001



The p-value (in proteomics)
• Is a local measure, meaning that it is confined specifically to the 

particular PSM under consideration (it is therefore self-contained)
• Global measures on the other hand, considers all PSMs scores 

concurrently and relative to each other (they are therefore not self-
contained).

• Lets say we observe a PSM with a score of 1, we can build an 
empirical reference distribution of similar false/random sequences 
and find out what are their respective PSM scores. If the observed 
PSM does better than at least some alpha threshold, then we can 
say that this PSM is statistically significant, and so we reject the 
null hypothesis for the alternative.

• This is computationally very intensive. ALSO… what is a 
reasonable null?



False Discovery Rate (FDR)

Benjamini & Hochberg, JSTOR, 1995; Storey & Tibshirani, PNAS, 2003

False Discovery Rate (FDR): The expected fraction of false positives

among the significant test statistics. (FP/FP+TP)

Compare this against the false positive rate which is FP/(FP+TN)

Threshold
This seems great. But in reality, we 

don’t know which ones are wrong.

This is similar to the null problem in p-

value generation. So how do we create 

something which we know to be wrong 

or sure?

So how do we look at this?

Let’s say we have a set of PSM scores and decide to 

draw the line at 6, i.e., we accept all PSMs with scores > 

6.

Let’s also assume we have perfect knowledge of correct 

and wrong matches.

We note that 10 PSMs are retained.

Of these, 2 are wrong. So the FDR is therefore

FDR = 2/10 = 20% = 0.2



False Discovery Rate (FDR)

Estimating FDR:
How to purposely create your incorrect PSMs

In other words, all matches to decoy are false positives



False Discovery Rate (FDR)

Elias and Gygi. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. Methods Mol Biol. 2010.



False Discovery Rate (FDR)

Target-decoy searching steps

• Construct a concatenated target-
decoy sequence list, marking 
decoy sequences with a text flag in 
their annotation.

• Use a MS/MS search engine to 
interpret input MS/MS spectra 
using target-decoy sequence list.

• Evaluate the relative proportion of 
target and decoy sequences in the 
search space to derive the 
multiplicative factor required to 
estimate false positives, if 
necessary.

• Estimate false positive-related 
statistics.

• Use decoy hits to guide the 
establishment of filtering criteria.

• Report statistics for filtered data 
set.

Decoy construction rules

• Similar amino acid 
distributions as target protein 
sequences.

• Similar protein length 
distribution as target protein 
sequence list.

• Similar numbers of proteins 
as target protein list.

• Similar numbers of predicted 
peptides as target protein 
list.

• No predicted peptides in 
common between target and 
decoy sequence lists.



False Discovery Rate (FDR)

Reversal Shuffling Random Proteins

Advantages• Simple• Preserve general 
features of the 
target sequence list 
e.g. same inter-
protein redundancy• Defined 
transformation 
therefore repeatable

Disadvantages• Non-random 
transformation is 
less statistically 
rigorous• Cannot be used for 
peptides with low 
sequence 
complexity

Advantages• Simple• Has desired 
stochastic 
properties

Advantages• Has desired 
stochastic 
properties• Can preserve amino 
acid bias and 
protein length 
distributionDisadvantages• Redundancies and 

homologies 
between protein 
entries will not be 
preserved, so many 
more decoy 
peptides than 
originally present in 
the target sequence 
list

Disadvantages• Redundancies and 
homologies 
between protein 
entries will not be 
preserved, so many 
more decoy 
peptides than 
originally present in 
the target sequence 
list



FDR estimation based on decoy

No decoy With decoy

I.e., !0 is 1
Simpler. Since estimating !0 can be tricky.



Posterior Error Probability (PEP)

Posterior Error Probability (PEP): The probability that the null hypothesis is true
for a particular test statistic
In proteomics, it can be taken to mean the probability that a given PSM is wrong.
PEP is sometimes called “local FDR”

A PEP is the probability that a PSM scoring x is incorrect



P-value

Statistical evaluation: when to use what?

FDR/q value PEP

Käll et al. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. JPR, 2008

For the 
confidence in 
sets, of PSMs, 
peptides or
proteins

For the 
confidence in a 
particular PSM, 
peptide or
proteins

In experiments 
with one, or very 
few, spectra



Overview of proteo-informatics

Mass spectrometry

Search algorithm

De novo sequencing

Statistical validation 
of peptide and protein 

identifications

Data storage/
representation
formats

Quantitation

Data 
Storage/Dissemination

Functional Analysis

Peptide-spectra matching
(PSM)

Functional analysis



Functional analysis 1 (Comparative 
analysis)

• The process of creating knowledge and 
insight from biological data

• Comparative analysis (group A vs B)

– Assumption: the differences between two 
groups are phenotypically relevant and can 
be used to construct mechanistic 
explanation

– This is a fallacious assumption.



The Anna Karenina Principle

• Happy families are all alike, every 
unhappy family is unhappy in its own way 
--- Leo Tolstoy

• Interpreted as: There are many ways to 
violate the null hypothesis, but only one 
way that is pertinent to the outcome of 
interest



Happiness does not come easy

Lack of $ No leisure time

No communication Awful in-laws

……

Scandals Incompatibility

Happiness requires positive 
fulfilment of all possible 

categories. Failure in any leads to 
unhappiness

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology, 2018



Anna Karenina in comparative 
proteomics

Wrong test construction

Wrong null distribution

Batch effect

The gene is relevant

Chance association Non-causal association

False Dichotomy
Null: Gene does not cause disease
Alternative: Gene causes disease
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Observed Theoretical

A

B CX

True cause

B is reported but is merely correlated to A
Phenotype

Change 
Gene A

Normal
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e 
A Tuesday

Draw 1
Draw 2
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eq

ue
nc

y

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology, 2018



Dealing with the Anna Karenina

• A careless null/alternative hypothesis due to forgotten 
assumptions:

– Distributions of the feature of interest in the two samples 
are identical to the two corresponding populations 

– Features not of interest are equalized/controlled for in 
the two samples

– No other explanation for the significance of the test

– Null distribution models the real world 

• These make it easy to reject the carelessly stated null 
hypothesis and accept an incorrect alternative hypothesis. 

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology, 2018

Causes



Dealing with the Anna Karenina

• Check for sampling bias:
– Are the distributions of the feature of interest in the two samples same as that 

in the two populations?

• Check for exceptions:
– Are there large subpopulations for which the test outcome is opposite?

– Are there large subpopulations for which the test outcome 
becomes much more significant?

• Check for validity of the null distribution:
– Is there evidence that suggests the null distribution is inappropriate?

• Check the hypothesis statement construction
– Are the hypothesis statements being framed correctly (as opposed to a 

statement that is prone to being rejected for the wrong reasons)?

Good Practices to Avoid Wrong Conclusions and Get Deeper Insight

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology, 2018



Dealing with the Anna Karenina

• Check your assumptions
– Are the right assumptions being made (e.g. the independence of 

measured variables)?

• Check if appropriate summary statistics are used
– If an event is extremely rare, then using mean/median-based 

statistics will miss it; ditto if many similar events are present, but only 
one is relevant

• Note: Even if all (or most) of the above points 
are addressed, it still does not ensure 
phenotypic relevance, only correlation.

Good Practices to Avoid Wrong Conclusions and Get Deeper Insight

Goh and Wong. Dealing with confounders in -omics analysis. Trends in Biotechnology, 2018



Functional analysis 2 (Missing 
proteins)

Pr
ot

ei
ns

Samples

Notice all the NAs?

Cannot do analysis properly with such data



Missing proteins
• Any gene sequence whose respective 

protein has never been observed is an 
MP. 

• Alongside various initiatives---e.g. 
GPMDB, PeptideAtlas and neXtProt ---
the goal is to establish a genome-
proteome bridge. 



Missing proteins (Tiers 1 to 5)
PE 
Tier

Inclusion criteria Percentage of proteome 
against 20,055 proteins

Notes

1 Evidence at proteome level ~82.0% (16,518) *At least 2 unique non-overlapped 
peptides  at least 9 amino acid 
residues long

2 Evidence at transcript level 
only

~11.5% (2,290) *The transcript must be confidently 
detected, but no corresponding 
protein evidence

3 Homology inference only ~3.0% (565) *Inferred homologues without protein 
or transcript support 

4 Predicted ~0.5% (94) *Predicted coding sequence, without 
homology, transcript or protein 
support

5 Dubious ~3.0% (588) *The sequence may not fully meet 
the criteria for a predicted coding 
sequence
*Uncertainty over the veracity of the 
coding sequence (i.e., we do not 
know the sequence is correct)
*Some studies do not consider PE5 
as MPs



Missing proteins and relations to 
coverage, consistency problems

• An MP may be one of the following
– sequence is known but hard to detect, 

– sequence is known but never detected in MS

– sequence is not known but evidence exists for it e.g. via gene 
prediction or in raw spectra. 

• The “missing-protein problem” (MPP)---viz. the difficulty in 
detecting certain proteins despite transcript or theoretical 
evidence---should more rightfully be considered a narrow 
manifestation of the more general coverage (the inability to 
survey the entire proteome) and consistency (the inability to 
consistently detect a protein) problems



Coverage and consistency
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Legend: Missing Detected

Samples C
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Inconsistency issue

Goh and Wong. Advanced bioinformatics methods for practical applications of proteomics. Briefings in Bioinformatics, 2017



Why do proteins go missing?

Large reference libraries

Cutoff result in MPs

Not found in library

Cross-interference

The MP sequence is absent 

The MP's spectra 
are

often mixed up 
with other

proteins 
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Low Abundance

The MP's spectra 
have low intensities 

and barely 
distinguishable from 

background
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Unknown variants

The MP has unknown splice 
forms or PTMs

Known sequence
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Unknown variant

Sequence ambiguity

The MP lacks unique 
sequences
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P2

Low-Instrument Resolution

Low-resolution 
instruments 
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capture all 

peptide signals 
concurrently
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Zhou et al. Understanding missing proteins: A functional perspective. Drug Discovery Today, 2018



Missing value imputation (MVI)

• A few strategies:

– We fill in 0s or a fixed value based on the 
average of all protein expression

– For each missing value per protein, we fill in 
the average value based on all observed 
values for that same protein

– We estimate the missing value based on 
proteins that are known to be correlated 



Missing value imputation (MVI)

Limitation: It mostly only works well for inconsistency issue
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MVI 
methods 
really 
don’t 
work very 
well

CV(RMSE) ~ 20% at 75
th

percentile

Webb-Robertson, JPR, 14(5):1993-2001, 2015 



High 
abundance has 
lower % of 
MPs. However, 
low abundance 
is not a solely 
explanation. 
The MPs are 
equally 
distributed 
across the 
horizontal 
median.

Webb-Robertson, JPR, 14(5):1993-2001, 2015 



How about we use the idea of “guilt-
by-association?”

• Postulate: The chance of a protein complex being present in a sample is 
proportional to the fraction of its constituent proteins being correctly 
reported in the sample

• Suppose proteomics screen has 75% reliability; a complex comprises 
proteins A, B, C, D, E; and screen reports A, B, C, D only but not E.

Þ Complex has 60% (= 0.75 * 4 / 5) chance to be present

Þ The unreported protein E also has ³ 60% chance to be present, as 
presence of the complex implies presence of all its constituents

Þimproving coverage (recover missing 
proteins)

Þ Each of the reported proteins (A, B, C, and D) individually has 90% (= 
100% * 0.6 + 75% * 0.4) chance of being true positive, whereas a 
reported protein that is isolated has a lower 75% chance of being true 
positive

Þremoving noise

Goh and Wong. Integrating networks and proteomics: moving forward. Trends in Biotechnology, 2016
Goh and  Wong. Design principles for clinical network-based proteomics. Drug Discovery Today, 2016



How about we use the idea of “guilt-
by-association?”

The functional class scoring (FCS) algorithm

Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice. JPR, 2013



Does context really work?

• Looks like running FCS on real complexes 
is able to recover more proteins and more 
accurately

But we can’t rank the individual proteins simply based on p-values. Can we do

better? This is a story for another time. Or simply refer to 

https://www.comp.nus.edu.sg/~wongls/talks/wls-incob2017.pdf

Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice. JPR, 2013



What have we learnt?
• Getting good quality PSMs requires 

consideration of a large number of factors

• The p-value, FDR and PEP are used as 
statistical approaches for different purposes

• There are 3 strategies for creating decoy 
libraries in FDR estimation

• Proteomics is plagued with coverage and 
consistency issues, requiring various rescue 
analysis



You should be able to
• Describe the various factors affecting 

PSM quality

• Describe p-values, FDR and PEP

• Describe and evaluate the various decoy 
library generation strategies (sequence 
reversal, sequence randomization) for 
FDR estimation

• Describe coverage and consistency 
issues in proteomics
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