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By the end of this topic, you should be able to:
• Describe the historical context and evolution of quantitative biology from 

bioinformatics to data science.
• Describe the specific applications of data science in biology.
• Describe the characteristics and applications of small, moderate and big data.
• Describe the future of biological data.
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Established the power of ”quantitative biology” (precursor of 
“biological data science”)

Gregor Mendel
1822 - 1884

Source: By Unknown - http://0.tqn.com/d/biology/1/0/l/e/3244238.jpg, Public 
Domain, https://commons.wikimedia.org/w/index.php?curid=33347279

7 pea traits, or characters, studied by Mendel
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7 pea traits, or characters, studied by 
Mendel

Source: By Mariana Ruiz LadyofHats [Public domain], via Wikimedia Commons

Established the power of ”quantitative biology” (precursor of “biological data science”).
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Data collection: Mendel's principles of inheritance was 
established through an analysis of some 30,000 pea plants.

Pattern recognition: Recognising the inheritance of certain traits 
could be explained by a few simple mathematical rules.

Pattern generalisation: Demonstrating that this observation also 
applies beyond peas for certain traits.
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An expanding collection of sequences provided both a source of data and a set of interesting 
problems that were infeasible to solve without the number-crunching power of computers.

Source: Hagen, Nature Reviews Genetics 1, 231–236 (2000)

Why a data-
centric 
approach 
became 
essential?

Sequence and structure is information and a central part of the conceptual framework of 
molecular biology.

High-speed digital computers, which had developed from weapons research programmes during 
the Second World War, finally became widely available to academic biologists.
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1869

1952

1964

1879

1909

1941

1943

1953

1955

1962

DNA first isolated

Mitosis observed

Term ‘gene’ coined

One gene, one enzyme

X-ray diffraction of DNA

Genes make up DNA

DNA double helix

First protein sequence

Theory of molecular 
evolution

First nucleotide 
sequence

1965

Dayhoff Atlas of 
Protein Sequences

1948

ENIAC

1958

First integrated circuit

Margaret Dayhoff
(1925-1983)
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1970

Needleman-
Wunsch

First recombinant DNA 
molecule (Paul Berg)
UNIX, ARPANET
Email

1972

1975

Cray1 supercomputer
2D electrophoresis
Ethernet
Internet

1977

Apple, Commodore 
and Tandy sell PCs
DNA sequencing

1980

Multi-D NMR protein structure

RNA secondary 
structure
Smith-Waterman
IBM PC

1981

1982

φ λ genome 
sequenced
GenBank, GCG

1983

Miller-Lipman
seq db
searching alg

Epstein-Barr virus 
sequenced
Apple releases 
the Mac

1984 1985

FASTP
PCR

1986

SwissProt

1987

Human Genome Project
Physical map of E. coli

1988

FASTA, Clustal
“bioinformatics” 
coined
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1991

WWW, Linux

1992

HP Laser Jet 
600x600 dpi printer

1994

Netscape

1995

Java

1997

Deep Blue beats Kasparov, 
DVDs 2003

XRAID AI and data storage technologies become 
more powerful.

The rise of biological big data.1991

ESTs

1995

Microarrays
First bacterial 
genomes

1996

Yeast

1997

E coli

1998

C elegans

Arabidopsis, 
Drosophila

2000
2001

Human
Mouse

2002
2004

Rat

Bioinformatics becomes a discipline.1990

BLAST

1991

First time “bioinformatics” 
appears in scientific 

literature
ACeDB: first 

genome database

1993

Microarray 
analysis, SAGE

1995
1997

PSI_BLAST, 
Pfam, GenScan

1998

Phred, Consed
GeneMark

1999

MFOLD

2000

GeneOntology, 
FASTA3

2002

Arachne
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Data 
storage 

becomes 
cheap

Hadoop
2000

2006

Google 
Flu 

Trends

2008

2010

Data Science 
enters the 

mainstream 
vernacular

X

2013

IBM statistics: 
90% of the 

world’s data had 
been created in 
the preceding 

two years

Pfizer-
IBM 

Watson

2016

Roche-GNS 
Causal ML

Collab; 
Novartis-IBM 

Watson

2017

Cheap Disks --> Big Data --> Cloud Computing --> Mass Analytic Tools --> Data Scientists --> Data Science Teams --> New Analytic Insights

Data explosion and cloud computing Mass methods for 
dealing with large data Specific integration with biotech

Deep learning enters the biology fray Machine learning and AI  expected to change 
everything…
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DNA Sequencing Instruments

Super-resolution Digital Microscopy

Mass Spectrometer

Biology is becoming digitised.

Instruments produce a lot of raw data.

Greater throughput and resolution  Large Data

Instruments do not provide any meaningful 
interpretation on their own.
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The power of data science comes from its ability to find relationships over very 
large numbers of observations, commonly stored in terabytes or petabytes of 
data. 

However, given the size and complexities of these relationships, an exhaustive 
analytical pipeline  requires an end-to-end integration of approaches, forming 
an analysis stack starting with data collection and continuing through 
computational and statistical evaluations toward higher-level biological 
interpretations and insights.

Why data science for Biology will be challenging?



Biochemistry

Molecular
Biology

Algorithmics

Statistics

Mathematics

Numerical 
Analysis

Evolution

Genetics

Data
ManagementImage 

Analysis

Biophysics

Genomics

Data Science
(In the context of biology)
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Scientists can not be experts in all the domains.

Solution is multidisciplinary teams and/ or multi-lab projects.

Problems:

• Biologists (generally) hate statistics and computers.
• Computer scientists (generally) ignore statistics and biology.
• Statisticians and mathematicians (generally):

– Speak a strange language for any other human being.
– Spend their time writing formula everywhere.

• Complexity of the biological domain:
– Each time you try to formulate a rule, there is a possible counter-example.
– Even the definition of a single word requires a book rather than a sentence (Exercise: find a 

consensual definition of "gene").
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• Small data is data that is 'small' enough for human comprehension.

• It is data in a volume and format that makes it accessible, informative and actionable.

• In today’s “big data” world however, a third dimension meaning for small data is now coined:
Small data connects people with timely, meaningful insights (derived from big data and/or “local” sources), 
organised and packaged – often visually – to be accessible, understandable, and actionable for everyday tasks.

• In other words, small data is the “purified gold” (insights) mined from the large mass of big data.

• What do you think? Go check out the comments section at https://smalldatagroup.com/2013/10/18/defining-
small-data/
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In the hundreds of KB to MB range.

Limited samples --- ~1 to 10 range normally.

Can be analysed manually.

Can be analysed on a regular computer.
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By ismb - 122-ISMBECCB15-TuesAM, CC BY 2.0, 
https://commons.wikimedia.org/w/index.php?curid=46139453

Biology has traditionally been an 
observational rather than a deductive 
science. Although recent developments 
have not altered this basic orientation, the 
nature of the data has radically changed. It 
is arguable that until recently all biological 
observations were fundamentally anecdotal 
- admittedly with varying degrees of 
precision, some very high indeed.

--- Arthur Lesk
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From its humble beginnings, biology is mostly about small data:
• Inference from relatively small numbers of observations.

• Observation of Wildlife in the Galapogos -> Theory of evolution
• Groupings of species by general characteristics -> Phylogeny
• Understanding how disease occurs due to mutation by 

comparing sequences -> e.g. Sickle Cell Anemia, and many 
other examples

• Biology was limited by technology and availability of samples.
• And digital biological data is pretty much a new thing.

1953 Watson-Crick structure of DNA published. 

1975 F. Sanger, and independently A. Maxam and W. Gilbert, 
develop methods for sequencing DNA. 

1977 Bacteriophage φX-174 sequenced: First 'complete genome.' 
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• Biology is rift with sequence information (e.g. a sequence may correspond to a gene, an mRNA or a 
protein).

• Sequence is correlated with function (e.g. the p53 gene sequence correspond to an oncogene which 
drives cancer).

• Sequence is also data --- when we are dealing with a small number of sequences, this is a small data 
problem.

• There are many useful things we can do with small data:
• One of the most obvious being to compare 2 strings to see how similar they are (with similarity 

being a proxy for evolutionary relationships) --- this is also known as pairwise sequence 
comparison (e.g. BLAST).

• Pairwise sequence comparisons may be generalised towards simultaneous comparisons of > 2 
sequences at once --- this is known as multiple sequence comparison (e.g. T-COFFEE and 
MUSCLE/ MUltiple Sequence Comparison by Log-Expectation).

• Note: Sequence comparison of biological data is essentially an application of the string matching 
problem in CS to biology.
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An early example:

Doolittle et al. (Science, July 1983) searched for platelet-derived growth factor 
(PDGF) in his own DB. He found that PDGF is similar to v-sis oncogene
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• Key aspect of sequence 
comparison is sequence 
alignment.

• A sequence alignment 
maximises the number of 
positions that are in 
agreement in two 
sequences.

24



• Infer protein function
When two protein look similar, we conjecture they come from the same ancestor 
and inherit the ancestor’s function (i.e. they are homologous).

• Find evolution distance between two species
Evolution modifies the DNA of species -> Similarity of their genome correlates 
with their evolutionary distance.

• Help genome assembly
Human genome project reconstructs the whole genome based on overlapping 
info of a huge amount of short DNA pieces.
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There are two types of pairwise alignments, local and global alignments.

A local alignment is an alignment of two sub-regions of a pair of sequences. This type of 
alignment is appropriate when aligning two segments of genomic DNA that may have local 
regions of similarity embedded in a background of a non-homologous sequence.

A global alignment is a sequence alignment over the entire length of two or more nucleic 
acid or protein sequences. In a global alignment, the sequences are assumed to be 
homologous along their entire length.
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Scoring systems in pairwise alignments
In order to align a pair of sequences, a scoring system is required to score matches and mismatches. The scoring 
system can be as simple as “+1” for a match and “-1” for a mismatch between the pair of sequences at any given 
site of comparison. However substitutions, insertions and deletions occur at different rates over evolutionary 
time. 

This variation in rates is the result of a large number of factors, including the mutation process, genetic drift and 
natural selection. For protein sequences, the relative rates of different substitutions can be empirically 
determined by comparing a large number of related sequences. These empirical measurements can then form 
the basis of a scoring system for aligning subsequent sequences. Many scoring systems have been developed in 
this way. These matrices incorporate the evolutionary preferences for certain substitutions over other kinds of 
substitutions in the form of log-odd scores. Popular matrices used for protein alignments are BLOSUM and 
PAM matrices.

Note: The BLOSUM and PAM matrices are substitution matrices. The number of a BLOSUM matrix indicates the 
threshold (%) similarity between the sequences originally used to create the matrix. BLOSUM matrices with 
higher numbers are more suitable for aligning closely related sequences. For PAM, the lower numbered tables are 
for closely related sequences and higher numbered PAMs are for more distant groups.
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Algorithms for pairwise alignments

Once a scoring system has been chosen, we need an algorithm to find the optimal 
alignment of two sequences. This is done by inserting gaps in order to maximise the 
alignment score. If the sequences are related along their entire sequence, a global 
alignment is appropriate. However, if the relatedness of the sequences is unknown or 
they are expected to share only small regions of similarity, (such as a common domain) 
then a local alignment is more appropriate.

An efficient algorithm for global alignment was described by Needleman and Wunsch 
1970, and their algorithms was later extended by Gotoh 1982 to model gaps more 
accurately. For local alignments, the Smith-Waterman algorithm is the most commonly 
used. 
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Ribosomal RNAs turned out to have the essential feature of being present in all organisms, with the 
right degree of divergence. (Too much or too little divergence and relationships become invisible.) On 
the basis of 16S ribosomal RNAs, C. Woese divided living things most fundamentally into three 
Domains (a level above Kingdom in the hierarchy): Bacteria, Archaea and Eukarya.

Major divisions of living things, derived by C. Woese on the basis of 16S RNA sequences. 
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• Pairwise Comparison:
• Global

• EMBOSS Needle (https://www.ebi.ac.uk/Tools/psa/)
• EMBOSS Stretcher (https://www.ebi.ac.uk/Tools/psa/)

• Local
• EMBOSS Water (https://www.ebi.ac.uk/Tools/psa/)
• EMBOSS Matcher (https://www.ebi.ac.uk/Tools/psa/)

• Multiple Comparison
• T-COFFEE (http://tcoffee.crg.cat/)
• MUSCLE (https://www.ebi.ac.uk/Tools/msa/muscle/)

• Heuristics
• BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi)
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• Moderate data is data that forms the current readouts from most moderate day 
instruments.

• This includes the high-throughput reads/assaying of biological entities (the genome, 
transcriptome and proteome).

• Although these platforms can mine deeply for all genes, they are ultimately limited in 
sample size and/or resolution and does not qualify as big data.

• It is data in a volume and format that while accessible and informative, requires some 
degree of work and downstream analysis to make it actionable.

• Downstream analysis involves a philosophy known as comparative study (aka 
comparative analysis).

• Moderate data analysis currently dominates the –omics landscape in biological 
research.
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In the hundreds of MB to GB range.

Limited to almost generous samples ~5 to 100.

Difficult to analyse manually.

Can be analysed on a regular computer.
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• Comparative studies in biology use an investigative philosophy that many scientists identify as the 
“comparative method.” 

• In one sense, for those concerned with evolutionary history, the comparative method provides 
insights into adaptation by correlating differences among species with ecological factors (Futuyma
1986). 

• In another sense, biologists often study the particular features of one species to learn about some 
aspect of a second species.

• In other words, you need 2 things: Factors, which are variables you can measure, such as weight, 
height, etc. And Classes, groups which you can compare against, such as gender (male vs female), 
species (man vs chimp), etc.

https://openlibrary.org/books/OL2722009M/Evolutionary_biology
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The idea that the systems of an organism may be better understood by the use of comparison and 
contrast among organisms is an ancient one:
• Aristotle (384–322 BC) sought common characters of organisms as a means of classification and 

explanation.
• Cole (1944) cites the writings of the Hippocratic School (4th century BC) concerning an attempt to 

compare the human skeleton to that of other vertebrates.
• Gardner (1965) states that Galen (AD 130–200) based his textbook of human anatomy, 

On Anatomical Preparations, on “dissections of such animals as sheep, oxen, dogs, bears, and 
apes.”

• Cole (1944) also cites Crie (1882) who refers to Belon as “the father of comparative anatomy.” 
• Belon's work (1555), L'Histoire de la Nature des Oyseaux, in which the skeletal structures of birds 

are compared to those of humans, was one of the first explicit applications of the comparative 
method in biology.

https://academic.oup.com/bioscience/article/52/9/830/248783

The new tech heavy -omics sciences is based on the old scientific tradition!
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In recent years, the term comparative method/analysis/study is increasingly used to refer to 
a set of statistical procedures for achieving various purposes:
• Reconstructing phylogenies and for controlling for phylogenetic effects during inter- and 

intrataxon comparisons (Harvey and Pagel 1991). 
• The major concern with statistical comparisons across taxa is the failure to account for the 

role of identity by descent in producing shared characteristics (Felsenstein 1985) -> 
convergence without true relationships e.g. birds= insects because they both have wings!

• In the case of taxa analysis, features are “constructs” that are engineered. For example, 
you may choose to measure the length of the wings, or the width of the legs. Whatever 
you choose to measure, is a variable that you have constructed/engineered.

• Constructed/engineered features may or may not be informative.
• There is also the element of choice/design (you may choose however you wished to 

analyse some anatomical feature).
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• Biological features have now changed with the advancement of technology… from anatomical 
features -> gene sequences and copy number -> gene expression -> protein expression.

• In –omics analysis, the engineered feature is determined by the technology
• In DNA chip, the feature is DNA copy number
• In microarray, the feature is gene expression
• In proteomics, the feature is protein expression

• In such cases, you do not get a choice on what variables you want to measure. They are 
predefined.

• Additionally, because there are so many, some of these variables could be potentially 
informative. 

• And so, what you want to do, is to hone-in on some of these informative signals out of a sea 
of no signal or sea of noise.
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https://www.ncbi.nlm.nih.gov/pubmed/27028851

Comparative genomic analysis of primary tumors and metastases in breast cancer.

Personalised medicine uses genomic information for selecting therapy in patients with metastatic cancer. An issue is the optimal
tissue source (primary tumor or metastasis) for testing. We compared the DNA copy number and mutational profiles of primary 
breast cancers and paired metastases from 23 patients using whole-genome array-comparative genomic hybridisation and next-
generation sequencing of 365 “cancer-associated” genes. Primary tumors and metastases harbored copy number alterations 
(CNAs) and mutations common in breast cancer and showed concordant profiles. The global concordance regarding CNAs was 
shown by clustering and correlation matrix, which showed that each metastasis correlated more strongly with its paired tumor
than with other samples. Genes with recurrent amplifications in breast cancer showed 100% (ERBB2, FGFR1), 96% (CCND1), 
and 88% (MYC) concordance for the amplified/non-amplified status. Among all samples, 499 mutations were identified, 
including 39 recurrent (AKT1, ERBB2, PIK3CA, TP53) and 460 non-recurrent variants. The tumors/metastases concordance of 
variants was 75%, higher for recurrent (92%) than for non-recurrent (73%) variants. Further mutational discordance came from 
very different variant allele frequencies for some variants. We showed that the chosen targeted therapy in two clinical trials of 
personalised medicine would be concordant in all but one patient (96%) when based on the molecular profiling of tumor and 
paired metastasis. Our results suggest that the genotyping of primary tumor may be acceptable to guide systemic treatment if the 
metastatic sample is not obtainable. However, given the rare but potentially relevant divergences for some actionable driver 
genes, the profiling of metastatic sample is recommended.
Keywords: array-CGH, breast cancer, genomics, metastasis, sequencing

Pause the video and read this.
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https://www.ncbi.nlm.nih.gov/pubmed/27028851

Data Summary Attributes

Classes

Sample size

What is measured?

What kind of metrics are being used?

Are all genes being monitored? (Is this a 
global screen for all genes?)

Data analysis plan

Question/Hypothesis

Try filling this in yourself first
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Data Summary Attributes

Classes Primary tumor vs metastatic

Sample size 23 (2 samples per patient)

What is measured? DNA copy number changes (DNA copy number) and gene expression (NGS)

What kind of metrics are being used? Correlation (to measure similarity between samples) and Clustering (to see which 
samples are most similar to each other)

Are all genes being monitored? (Is 
this a global screen for all genes?)

No. Only profiles of 365 cancer genes are looked at. This is a targeted screen. Also, 
out of 499 mutations being monitored, 39 are recurrent. 

Data analysis plan Since each patient yields 2 sets of samples. It should be logically a “paired” setup 
involving comparisons of 2 samples against each other, per patient. (Look at 
independent vs paired testing)

Question/Hypothesis If there is a metastasis, can we use the primary tumor to guide personalised
treatment (Esp if the metastases is inaccessible). In other words, should we worry 
about high divergence between the primary tumor and metastases?

https://www.ncbi.nlm.nih.gov/pubmed/27028851
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Distribution of mutations in all samples

The mutations present in at least 4 out of 
46 samples are shown. Genes are 
ordered from top to bottom by 
decreasing frequency of mutations. 
Samples are ordered by patient number. 
Recurrent mutations are in red and non-
recurrent mutations are in blue. The 
checkerboard pattern indicates the 
discordant mutations between primary 
tumors (P) and paired metastases (M).

Take a while to look and analyse this 
plot. And answer the following 
questions.

https://www.ncbi.nlm.nih.gov/pubmed/27028851
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Qn 1: Based only on this plot, are 
recurrent mutations associated with 
higher prevalence amongst the 23 
patients? 

Ans: Yes. This applies specifically to 
PIK3CA. However, it could also be said 
that PIK3CA is strongly enriched for 
recurrent mutations.

https://www.ncbi.nlm.nih.gov/pubmed/27028851
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Qn 2: Based only on this plot, would you 
conclude primary tumour are similar to 
metastases?

Ans: Yes. 
Checkerboards (signifying discordance) are 
relatively rare. Primary tumours between 
samples differ greatly from each other (see 
ID1 to 23). However, they are most similar to 
themselves, including the spawned 
metastases (see ID1 within and compare 
against ID2 for a start). In other words, we 
can use the primary tumour to guide 
treatment strategy usually. You may also 
notice that discordant events are not 
randomly distributed. Those with discordant 
events may have worse prognosis. What 
should we do?

https://www.ncbi.nlm.nih.gov/pubmed/27028851
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• Big data is data that are stored and accessible from cloud-computing platforms 
and massive data warehouses.

• Examples in biology include PRIDE  (PRoteomics IDEntifications database) and 
GEO (Gene Expression Omnibus).

• It is data in a volume and format that is not easily accessible due to its size and 
requires extensive mining to extract insight, requires a lot of degree of work, 
specialised downstream expertise to make it actionable.

• Comparative analysis is still possible, but may be too simplistic to make full use 
of the data.

• Big data analysis is the way to look towards as biological becomes increasingly 
digitised and open access databases get larger and larger.
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In the hundreds of GB to PB range.

Large number of samples 100 upwards.

Cannot be analysed manually.

Cannot be analysed on a regular computer – requires novel solutions e.g. cloud-
based computing, parallel processing, etc.
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All these computer technology storage units of measurement 
are based on the byte, which is the amount of storage 
required to store a single character of text.

• petabyte (PB), which is larger than a,
• terabyte (TB), which is larger than a,
• gigabyte (GB), which is larger than a,
• megabyte (MB), which is larger than a,
• kilobyte (KB), which is larger than a,
• byte (B).

There are 1,024 MB in 1 GB.
There are 1,024 GB in 1 TB.
There are 1,024 TB in 1 PB.

As of 2018, most new, average priced computer hard 
drives are in the 1 to 3 TB range.
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Metric Value Bytes

Byte (B) 1 1

Kilobyte (KB) 1,0241 1,024

Megabyte (MB) 1,0242 1,048,576

Gigabyte (GB) 1,0243 1,073,741,824

Terabyte (TB) 1,0244 1,099,511,627,776

Petabyte (PB) 1,0245 1,125,899,906,842,624

Exabyte (EB) 1,0246 1,152,921,504,606,846,976

Zettabyte (ZB) 1,0247 1,180,591,620,717,411,303,424

Yottabyte (YB) 1,0248 1,208,925,819,614,629,174,706,176

This is just for reference. Please do not memorise.
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Talking about the GB is a bit more commonplace—we see GBs everywhere, from memory cards, to 
movie downloads, smartphone data plans, and more. A single GB is equivalent to a little over 700 
floppy disks or just over a single CD.

A GB is not a small number by any means, but these days it's a level of data we use up quickly, 
sometimes several times over each day. It's a number we very much run up against on a regular basis.
• 1 GB can store almost 300 songs in MP3 format.
• A single HD Netflix movie might gobble up over 4 GB as you watch. A 4K version might run over 20 

GB!
• A DVD movie disc holds about 9.4 GB.
• Most smartphones store 64 GB or 128 GB of data (your apps, music downloads, etc.).
• Your smartphone data plan, which you use when you're away from your wireless network at home, 

might be capped at 5 GB, 10 GB, or a bit more per month.

Like we showed in the MB to GB conversion a few sections above, 1 GB is the same as over one billion 
bytes. That's no small number, but it's not nearly an impressive of an amount as it once was.
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https://www.lifewire.com/what-is-a-data-plan-3426701
https://www.lifewire.com/mp3-file-2622780
https://www.lifewire.com/overview-of-the-netflix-streaming-service-1847831
https://www.lifewire.com/what-makes-a-smartphone-smart-579597


• A single TB is a lot of space. It would take 1,498 CD-ROM discs to store just 1 TB worth of 
information.

• As of 2018, most new, average priced computer hard drives are in the 1 to 3 TB range.

• Many ISPs cap monthly data usage at 1 TB.

• An 4th generation Playstation (or game console) ships with 1 TB hard drive (and a current 
generation video game is about 10-50 GB).

• Around 130,000 digital photos would require 1 TB of space...close to 400 photos every day for a 
year!

• IBM's famous Watson game-playing supercomputer has 16 TB of RAM.

• We are still not yet seeing the Peta-byte in our everyday lives.
50
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Organisation (2014 statistics) Est. amount of data processed per day Source

eBay 100 pb
http://www-
conf.slac.stanford.edu/xldb11/talks/xldb2011_tue_1055_Tom
Fastner.pdf

Google 100 pb http://www.slideshare.net/kmstechnology/big-data-
overview-2013-2014

Baidu 10-100 pb
http://on-
demand.gputechconf.com/gtc/2014/presentations/S4651-
deep-learning-meets-heterogeneous-computing.pdf

NSA 29 pb
http://arstechnica.com/information-technology/2013/08/the-
1-6-percent-of-the-internet-that-nsa-touches-is-bigger-than-
it-seems/

Facebook 600 Tb https://code.facebook.com/posts/229861827208629/scaling-
the-facebook-data-warehouse-to-300-pb/

Twitter 100 Tb http://www.kdd.org/sites/default/files/issues/14-2-2012-
12/V14-02-02-Lin.pdf

Spotify 2.2 Tb (compressed; becomes 64 Tb in Hadoop) http://www.slideshare.net/AdamKawa/hadoop-operations-
powered-by-hadoop-hadoop-summit-2014-amsterdam

Sanger Institute 1.7 Tb (DNA sequencing data only) http://www.slideshare.net/insideHPC/cutts
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Organisation Est. amount of data stored Source
Google 15,000 pb (=15 exabytes) https://what-if.xkcd.com/63/

NSA 10,000 pb (possibly 
overestimated, see source)

http://www.forbes.com/sites/netapp/2013/07/26/nsa-utah-datacenter/

Baidu 2,000 pb http://on-demand.gputechconf.com/gtc/2014/presentations/S4651-deep-learning-
meets-heterogeneous-computing.pdf

Facebook 300 pb https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-
warehouse-to-300-pb/

Ebay 90 pb http://www.itnews.com.au/News/342615,inside-ebay8217s-90pb-data-
warehouse.aspx

Sanger (sequencing 
equipment

22 pb (for DNA sequencing data 
only; ~45 pb for everything per 
Ewan Birney May 2014)

http://insidehpc.com/2013/10/07/sanger-institute-deploys-22-petabytes-lustre-
powered-ddn-storage/

Spotify 10 pb http://www.slideshare.net/AdamKawa/hadoop-operations-powered-by-hadoop-
hadoop-summit-2014-amsterdam
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1 TB seems like a lot of data (and for daily lives, is 
more than enough). In biology,
• There are more than 2.7 million samples are 

now available from the Gene Expression 
Omnibus database (Last check: 19 Nov 2018).

• Assuming each file is about 1 GB (very modest 
estimation), this is already easily in the range of 
2.7 Petabytes.

• Biology is entering the digital era.
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While naturally subject to signal-to-noise challenges, big data may potentially compensate for the 
noisiness of each individual data set precisely because of its scale.

Intuitively, signals that occur independently in multiple data sets are more likely to be “real”; for 
example, genes identified as cell-cycle regulated in multiple genome-scale studies are more likely 
to be truly cell-cycle regulated.

But this is provided that a common signal “exists” and is “detectable”.

Simply identifying repeating signals can also zero in on common technical and biological artefacts
or very broad (and thus often less interesting) biological signals, such as the general stress 
response that S. cerevisiae exhibit across essentially all treatments or broad growth regulators in 
human cell culture data.
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Big Data also has the potential of revolutionising our use of model organisms, enabling accurate, 
less-biased, molecular-level identification of the most informative model for genes and diseases in 
the least expensive and most tractable experimental system. 

The key advantage is the ability to go beyond sequence-based orthology to systematically assess 
functional conservation, promising a functional mapping of proteins, pathways, and phenotypes 
across organisms. 

For example, biologists can use a method based on probabilistically mapping protein networks from 
a large compendium of high-throughput expression data across organisms to systematically predict 
which genes are most likely to participate in the same biological process and thus have analogous 
function in different organisms.

In other words, massive data integration.
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galaxyproject.org Platform for genome-scale biomedical research

imp.princeton.edu Functional networks in model organisms and humans

giant.princeton.edu Tissue-specific networks and genome-wide association studies in humans

thebiogrid.org Database of protein and genetic interactions

seek.princeton.edu Cross-platform search engine for expression data

genomespace.org Framework for integrative genomics analysis

cbioportal.org Visualisation and analysis of cancer genomic data

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501356/
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The wealth that Big Data brings will enable cell 
biologists to better design and focus their 
experimental programs with the expectation 
that biological insights will come faster and 
more efficiently. 

We are not even close to replacing individual 
experiments (and the cell biologists who do 
them!) with computers, but instead are in the 
midst of an exciting time when we are just 
beginning to tap the major effect of Big Data 
on the world of cell biology.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501356/
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Big Data empowers ML/AI

The machines ease the 
process and may identify 
patterns that would take 
considerably longer to 
recognise with human 
effort alone.
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https://www.allencell.org/

Scientists at the Allen Institute have used machine learning to train computers to see parts of the cell 
the human eye cannot easily distinguish. Using 3D images of fluorescently labeled cells, the research 
team taught computers to find structures inside living cells without fluorescent labels, using only black 
and white images generated by an inexpensive technique known as brightfield microscopy.
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• A learning algorithm that processes natural language and formulate new ideas from what it reads, sifts 
through vast chemical libraries, medical databases and conventionally presented scientific papers, looking for 
potential drug molecules (with particular focus on Motor Neuron Disease, Parkinson’s Disease, Glioblastoma 
and Sarcopenia).

• April 2018 – Raised USD$150 Million (with most backers from US e.g. Woodford Investment Management 
despite being UK-based).

https://benevolent.ai/
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• XtalPi is a pharmaceutical technology company that is reinventing the industry’s approach towards 
drug research and development with its Intelligent Digital Drug Discovery and Development (ID4) 
platform which integrates quantum mechanics, AI, and cloud computing, allowing pharmaceutical 
companies to increase efficiency, accuracy, and success rates at critical stages of drug R&D.

• USD $66 million investment from Google, Tencent, Sequoia China. 

http://www.xtalpi.com/
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• In late 2016, pharmaceutical giant Pfizer announced a collaboration with IBM, 
involving the use of the latter's Watson AI for immuno-oncological research.

• In June 2017, Novartis also announced a collaboration with IBM Watson to use AI 
for improving health outcomes in breast cancer patients (Clinical Trial Matching).
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1. The distinction between small to big data lies 
in its actual size in bytes, the number of 
samples, and/or the numbers of variables 
covered.

2. Small data has taken on new meaning --- it 
may refer to a small dataset, or to the extract 
“gold” or insight from big data.

3. Current –omics analysis from most 
experiments are not as big as they claim to 
be. They fall in the realm of moderate data.

4. Comparative analysis involves comparison of 
samples between different classes 
benchmarked on a common set of variables.

5. Although we live in the TB age, big data in the 
PB and even the EB range govern many 
aspects of our lives.

6. Biology is becoming increasingly digitised. As 
we enter the age of AI, it is important to 
understand how these new technologies may 
help us derive novel insight and therapies 
given heaps of stored data.
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