

A Few Examples of Machine Learning Algorithms

BS0004 Introduction to Data Science

Dr Wilson Goh School of Biological Sciences

Learning Objectives

By the end of this topic, you should be able to:

- Describe machine learning.
- Describe the major classes of ML methods.
- Describe how rule-based decision trees are constructed.
- Describe how KNN works.

What is Machine Learning?

BS0004 Introduction to Data Science

Dr Wilson Goh School of Biological Sciences

What is Machine Learning (ML)?

"Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed."

--- Arthur Samuel (1959)

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E." -- Tom Mitchell (1997)

ML solves complex problems that cannot be solved by numerical means alone.

What is Machine Learning (ML)?

Pedro Domingos, CSE446

Suitable Problems for ML

- The highly complex nature of many real-world problems, though, often means that inventing specialised algorithms that will solve them perfectly every time is impractical, if not impossible.
- Examples of machine learning problems include, "Will this patient die from this cancer?", "What is the market value of this house?".

Will this patient die from this cancer?

What is the market value of this house?

Overview of Machine Learning

BS0004 Introduction to Data Science

Dr Wilson Goh School of Biological Sciences

Supervised and Unsupervised ML

Supervised machine learning:

- Classification machine learning systems: guess the class (e.g. survive or die).
- **Regression:** guess the value Y when X₁..X_n is observed.

Unsupervised machine learning: The program is given data and must find patterns and relationships therein **without** explicitly using class information (output).

• **Clustering**: Group together samples that are more similar to one another (then check for corroboration with output/class).

Supervised Learning (Classification)

- Learn from past experience, and use the learned knowledge to classify new data.
- Knowledge learned by intelligent algorithms.

• Examples:

O Clinical diagnosis for patientsO Cell type classification

- Classification involves > 1 class of data. E.g., Normal vs disease cells for a diagnosis problem.
- Training data is a set of instances (samples, points, etc.) with known class labels.
- Test data is a set of instances whose class labels are to be predicted.

Some Notation

• Training data:

 $\{<x_1, y_1>, <x_2, y_2>, ..., <x_m, y_m>\}$

where x_j are n-dimensional vectors and y_j are from a discrete space Y. E.g., Y = {normal, disease}.

 Test data: {<u₁, ?>, <u₂, ?>, ..., <u_k, ?> }

 \circ Where u_k is an n-dimensional vector and ? are the classes to be predicted.

Relational Data Representation (X and Y)

Which sources of big biological data are amendable to this? Genomics, Transcriptomics, RT-PCR, Proteomics or combinations of these.

Variables/ Features

- Categorical features (Nominal/ Ordinal)

 Colour = {red, blue, green}
- Continuous or numerical features (Interval/ Ratio)
 - Gene Expression
 - \circ Age
 - Blood Pressure

Data Example

		Each co	olumn is a variable		
	Outlook	Тетр	Humidity	Windy	Class
	Sunny	75	70	True	Play
	Sunny	80	90	True	Don't
	Sunny	85	85	False	Don't
	Sunny	72	95	True	Don't
	Sunny	69	70	False	Play
	Overcast	72	90	True	Play
Fach row is	Overcast	83	78	False	Play
a Sample	Overcast	64	65	True	Play
·	Overcast	81	75	False	Play
	Rain	71	80	True	Don't
	Rain	65	70	True	Don't
	Rain	75	80	False	Play
	Rain	68	80	False	Play
	Rain	70	96	False	Play
	Categorical	(Continuous		Categorical

Supervised Learning (Global View)

How do you know if your predictions are good?

Many measures:

Accuracy, error rate, false positive rate, false negative rate, sensitivity, specificity, precision.

• K-fold cross validation:

 Given a dataset, divide it into k even parts, k-1 of them are used for training, and the rest one part treated as test data.

Independent validation (Performance on independent blind test data): O Blind test data properly represent real world.

Requirements of a Good Classifier

- High accuracy, sensitivity, specificity and precision (Is this truly possible?).
- High comprehensibility.

What determines good performance?

Decision Trees

BS0004 Introduction to Data Science

Dr Wilson Goh School of Biological Sciences

Decision Trees

- A group of rule-based methods useful for classification.
- Systematic selection/ ordering of a small number of features used for the decision making.
- This increases comprehensibility of the knowledge patterns (tells us which variables are the most important).

Structure of Decision Trees

- If $x_1 > a_1 \& x_2 > a_2$, then it's class A.
- Easy interpretation, but accuracy may be unattractive.

Decision Tree Example

Outlook	Тетр	Humidity	Windy	Class	
Sunny	75	70	True	Play	
Sunny	80	90	True	Don't	
Sunny	85	85	False	Don't	
Sunny	72	95	True	Don't	
Sunny	69	70	False	Play	A total of 14
Overcast	72	90	True	Play	
Overcast	83	78	False	Play	
Overcast	64	65	True	Play	5 Play
Overcast	81	75	False	Play	5 DOIL Play
Rain	71	80	True	Don't	
Rain	65	70	True	Don't	
Rain	75	80	False	Play	
Rain	68	80	False	Play]
Rain	70	96	False	Play]

Decision Tree Example

Construction of a tree is equivalent to determination of root node of the tree and root nodes of its sub-trees.

Decision Tree Example

ΤР

ΤN

ΤN

ΤN

Outlook	Тетр	Humidity	Windy	Class	Predicted
Sunny	75	70	True	Play	Play
Sunny	80	90	True	Don't	Don't
Sunny	85	85	False	Don't	Don't
Sunny	72	95	True	Don't	Don't
Sunny	69	70	False	Play	Play
Overcast	72	90	True	Play	Play
Overcast	83	78	False	Play	Play
Overcast	64	65	True	Play	Play
Overcast	81	75	False	Play	Play
Rain	71	80	True	Don't	Don't
Rain	65	70	True	Don't	Don't
Rain	75	80	False	Play	Play
Rain	68	80	False	Play	Play
Rain	70	96	False	Play	Play

Most Discriminatory Variable

- Every variable can be used to partition the training data e.g., "Play and Don't Play".
- If the partitions contain at least 1 pure class of training instances, then this variable is most certainly discriminatory.

Partitions

- Categorical feature:
 - Number of partitions of the training data is equal to the number of values of this feature e.g. Number of partitions {Play, Don't Play} = 2.
- Numerical feature:
 - \circ Two partitions based on some threshold e.g. A > 100 (splits into values which are greater than 100 or otherwise).

Data Example

	Each column is a variable						
	Outlook	Тетр	Humidity	Windy	Class		
	Sunny	75	70	True	Play		
	Sunny	80	90	True	Don't		
	Sunny	85	85	False	Don't		
	Sunny	72	95	True	Don't		
	Sunny	69	70	False	Play		
	Overcast	72	90	True	Play		
Each row is	Overcast	83	78	False	Play		
a Sample	Overcast	64	65	True	Play		
	Overcast	81	75	False	Play		
	Rain	71	80	True	Don't		
	Rain	65	70	True	Don't		
	Rain	75	80	False	Play		
	Rain	68	80	False	Play		
	Rain	70	96	False	Play		
	Categorical		Continuous		Categorical		

Partitioning Variables

Partitioning Variables

Decision Tree Construction

- Select the "best" feature as root node of the whole tree.
- Partition dataset into subsets using this feature so that the subsets are as "pure" as possible.
- After partition by this feature, select the best feature (with respect to the subset of training data) as root node of this sub-tree.
- Recursively, until the partitions become pure or almost pure.

Let's Construct a Decision Tree

Outlook	Тетр	Humidity	Windy	Class
Sunny	75	70	True	Play
Sunny	80	90	True	Don't
Sunny	85	85	False	Don't
Sunny	72	95	True	Don't
Sunny	69	70	False	Play
Overcast	72	90	True	Play
Overcast	83	78	False	Play
Overcast	64	65	True	Play
Overcast	81	75	False	Play
Rain	71	80	True	Don't
Rain	65	70	True	Don't
Rain	75	80	False	Play
Rain	68	80	False	Play
Rain	70	96	False	Play

Gini Coefficient

- Gini Index or coefficient can be used as an approximation of the power of a variable.
 Split is completely pure, Gini index = 0
 - \circ Split is impure, max Gini index = 1 1/k (where k = number of class levels)

$$Gini = \sum_{i \neq j} p(i)p(j)$$

i and j are levels of the target variable

- The sum of the joint probabilities of all impure combinations.
- Minimum value of Gini Index will be 0 when all observations belong to one class label.

Gini Coefficient

Suppose we have class label with 2 levels -> Normal (N) and Cancer (C). There are 4 possible permutations.

1	2	3	4
Normal	Cancer	Cancer	Normal
Normal	Cancer	Normal	Cancer

P(Class=N).P(Class=C).P(Class=C) + P(Class=C).P(Class=N) + P(Class=N).P(Class=C) = 1

P(Class=N).P(Class=C) + P(Class=C).P(Class=N) = 1 - P(Class=N).P(Class=N) - P(Class=C).P(Class=C)

 $P(Class=N).P(Class=C) + P(Class=C).P(Class=N) = 1 - P^{2}(Class=N) - P^{2}(Class=C)$

Maximum value of Gini Index = $1 - (P^2(Class=N) + P^2(Class=C))$

Maximum value of Gini Index = $1 - \sum_{t=0}^{t=k} P_t^2$

Where t is the class, and k are attributes of class (N and C).

Gini Coefficient

1	2	3	4
Normal	Cancer	Cancer	Normal
Normal	Cancer	Normal	Cancer

- Max Gini Index value = $1 (1/2)^2 (1/2)^2 = 1 2^*(1/2)^2 = 1 2^*(1/4) = 1 0.5 = 0.5$
- Similarly for Nominal variable with k level, the maximum value Gini Index is= 1 1/k.
- Since the play data has 2 levels (play and don't play), its max Gini index is also 0.5.
- However, knowing the min and max Gini coefficients don't tell us what is the quality of a split given a variable.

Gini Coefficient of a Split

```
GINI (s,t) = GINI (t) - P_L GINI (t_L) - P_R GINI (t_R)
```

where

s: split

t: node

GINI (t): Gini Index of input node t

P_L: Proportion of observation in Left Node after split, s

GINI (t_L): Gini of Left Node after split, s

P_R: Proportion of observation in Right Node after split, s

GINI (t_R): Gini of Right Node after split, s

Gini Coefficient of Outlook

- GINI (t) ≠ 0.5
- GINI (t) = $1 (5/14)^2 (9/14)^2 = 0.46$ [the distribution between classes is not equal!]
- Gini (Sunny) = $1 (2/5)^2 (3/5)^2 = 0.48$
- Gini (Overcast) = $1 (4/4)^2 (0/4)^2 = 0$
- Gini (Rain) = $1 (3/5)^2 (2/5)^2 = 0.48$
- Gini (Outlook) = 0.46 (5/14 * 0.48 + 4/14 * 0 + 5/14 * 0.48) = 0.46 -0.34 = 0.12

#note that Gini (overcast) is a pure sub-cluster
#Try doing Gini (Windy) and Gini (Humidity <= 75) yourself</pre>

Outlook	Тетр	Humidity	Windy	Class
Sunny	75	70	True	Play
Sunny	80	90	True	Don't
Sunny	85	85	False	Don't
Sunny	72	95	True	Don't
Sunny	69	70	False	Play
Overcast	72	90	True	Play
Overcast	83	78	False	Play
Overcast	64	65	True	Play
Overcast	81	75	False	Play
Rain	71	80	True	Don't
Rain	65	70	True	Don't
Rain	75	80	False	Play
Rain	68	80	False	Play
Rain	70	96	False	Play

Decision Tree in Action

- When considering high-throughput data with thousands of variables, the split rules are often not so clear. In this case.
- A "representative best gene" is shown at the top but these are by no means exhaustive (there can be many equivalent best genes at each level) nor does the selection of best genes necessarily mean anything biologically beyond prediction value.

Decision Trees

Advantages

- Single coverage of training data (elegance).
- Divide-and-conquer splitting strategy (simple).
- Rules are obvious (understandable).

- Fragmentation problem => Locally reliable but globally insignificant rules.
- Miss many globally significant rules.
- Mislead system.

Disadvantages

Some Examples of Use of Decision Trees in Biological data

- In prostate and bladder cancers (Adam et al. Proteomics, 2001).
- In serum samples to detect breast cancer (Zhang et al. Clinical Chemistry, 2002).
- In serum samples to detect ovarian cancer (Petricoin et al. Lancet; Li & Rao, PAKDD 2004).

K-Nearest Neighbours

BS0004 Introduction to Data Science

Dr Wilson Goh School of Biological Sciences

K-Nearest Neighbours (kNN)

Given a new case:

- Find k "nearest" neighbours, i.e., k most similar points in the training data set.
- Assign new case to the same class to which most of these neighbours belong.
- A common "distance" measure between samples x and y is $\sum_{x \in [r]_{t=y}}$
 - $\sum_{f} (x[f] y[f])^2$

• Where f ranges over variables of the samples.

Illustration of kNN (k=8)

Some Issues

- Simple to implement.
- Must compare new case against all training cases.
 May be slow during prediction.
- No need to train.
- But need to design distance measure properly.
 May need expert for this.
- Can't explain prediction outcome.
 Can't provide a model of the data.

Example Use of kNN

- Li et al, *Bioinformatics* 20:1638-1640, 2004.
 - Use kNN to diagnose ovarian cancers using proteomic spectra.
 - Data set is from Petricoin et al.,
 Lancet 359:572-577, 2002.

Number of Top Ranked m/z Ratios

Minimum, median and maximum of percentages of correct prediction as a function of the number of top-ranked m/z ratios on 50 independent partitions into learning and validation sets.

Summary

BS0004 Introduction to Data Science

Dr Wilson Goh School of Biological Sciences

Key Takeaways from this Topic

- Machine learning methods can be broadly divided into supervised and unsupervised.
- 2. Decision trees are very comprehensive when variable size is small.
- 3. KNN is a simple machine learning approach.
- 4. Designing a machine learning analysis pipeline is very complex.